Skip to main content
Log in

On the effective non-Hermitian eigenvalue problems for resonant levels

  • Published:
Il Nuovo Cimento D

Summary

A class of non-Hermitian eigenvalue equations, which are aimed to determine positions and widths of resonant (decaying) levels, is derived quite generally through a projection operator procedure whereby the effects of the continuum states responsible for the decay is represented in an effective manner. The boundary conditions appropriate to these eigenvalue problems are discussed and the wave function renormalization is evaluated. A connection is drawn with the effective eigenvalue problems occurring in the many-body Green’s functions theory. Features like the energy dependence of the self-energy for the single-particle Green’s function and of the screened Coulomb interaction for the electron-hole Green’s function are accordingly interpreted in terms of elimination of continuum channels.

Riassunto

É noto da tempo, soprattutto dai lavori di Feshbach sul metodo delle hamiltoniane efficaci per reazioni nucleari, che tecniche di operatori di proiezione sono particolarmente adatte a costruire hamiltoniane efficaci allo scopo di determinare i parametri rilevanti delle risonanze nella teoria della diffusione. In questo articolo si pone in maggiore risalto l’aspetto quasi-legato degli stati risonanti e si considera un problema modello dove un insieme di stati discreti é accoppiato con un insieme di stati continui, i quali sono poi eliminati dalla trattazione esplicita mediante operatori di proiezione. In questo modo la sottomatrice dell’operatore risolvente nel sottospazio degli stati discreti risulta espressa in termini di un’hamiltoniana efficace che è non hermitiana e dipendente dall’energia. Tale procedimento è poi collegato con la risoluzione della equazione di Schrödinger soggetta alle condizioni al contorno del tipo Kapur-Peierls che sono appropriate agli stati quasi stazionari. Questo collegamento fornisce, tra l’altro, una relazione tra la rinormalizzazione della funzione d’onda e la dipendenza dall’energia dell’hamiltoniana efficace. I risultati generali così ottenuti sono poi applicati alla teoria delle funzioni di Green a molti corpi. In particolare, si mostra come sia l’equazione di Dyson che determina i livelli a quasi particella sia l’equazione agli autovalori per gli eccitoni con schermaggio dielettrico possano essere interpretate nel senso delle hamiltoniane efficaci.

Резюме

В общем виде выводится класс незрмитовых уравнений для собственных значений, которые преднаэначемы для определения положений и ширин резонансных (распадающих) уровней, используя процедуру операторов проектирования. В таком подходе влияние непрерывных состояний, ответственных за распад, учитывается эффективным образом. Обсуждаются граничные условия, соответствующие этим проблемам собственных значений, и вычисляется перенормировка волновой функции. Отмечается связь с проблемами эффективных собственных значений, которые имеют место в теории многочастичных гриновских функций. Такие особенности, как энергетическая зависимость собственной энергии для одночастичной функции Грина и экранированное кулоновское взаимодействие для электрон-дырочной гриновской функции, интерпретируются соответственно на основе исключения непрерывных каналов.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Feshbach:Ann. Phys. (N. Y.),5, 357 (1958);19, 287 (1962);43, 410 (1967).

    Article  ADS  MathSciNet  Google Scholar 

  2. O. Gunnarsson andK. Schonhammer:Phys. Rev. B,22, 3710 (1980).

    Article  ADS  Google Scholar 

  3. L. Armstrong andH. C. Baker:J. Phys. B,13, 4727 (1980);H. C. Baker:Phys. Rev. Lett.,50, 1579 (1983).

    Article  ADS  Google Scholar 

  4. A. R. Williams, P. J. Feibelman andN. D. Lang:Phys. Rev. B,26, 5433 (1982).

    Article  ADS  Google Scholar 

  5. R. W. Zwanzig: inLectures in Theoretical Physics, Vol.3, edited byW. E. Brittin, B. W. Downs andJ. Downs (Interscience, New York, N.Y., 1961).

    Google Scholar 

  6. U. Fano:Phys. Rev.,124, 1866 (1961).

    Article  ADS  Google Scholar 

  7. L. C. Davis andL. A. Feldkamp:Phys. Rev. B,15, 2961 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  8. See,e.g.,M. C. Pease:Methods of Matrix Algebra (Academic Press, New York, N.Y., 1965), Chapt. 3.

    MATH  Google Scholar 

  9. A. J. Layzer:Phys. Rev.,129, 897 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  10. See,e.g.,G. D. Mahan:Many-Particle Physics (Plenum Press, New York, N.Y., 1981), p. 147.

    Google Scholar 

  11. P. A. M. Dirac:The Principles of Quantum Mechanics (Clarendon, Oxford, 1959), p. 61.

    Google Scholar 

  12. Cf. ref. (1); see alsoA. J. F. Siegert:Phys. Rev.,56, 750 (1939).

    Article  ADS  Google Scholar 

  13. Cf. appendix A of ref. (6).

    Article  ADS  Google Scholar 

  14. A similar expression for the wave function renormalization constant is also obtained in the ordinary Rayleigh-Schrödinger perturbation theory for bound states. Cf.,e. g.,G. Baym:Lectures on Quantum Mechanics (Benjamin, Reading, Mass., 1969), Chapt. 11.

    MATH  Google Scholar 

  15. L. Hedin andS. Lundqvist: inSolid State Physics, Vol.23, edited byH. Ehrenreich, F. Seitz andD. Turnbull (Academic Press, New York, N.Y., 1969), p. 1.

    Google Scholar 

  16. In semiconductors and insulators the restriction to either unoccupied or occupied single-particle states corresponds to decoupling the conduction from the valence bands, which is a common practice in numerical calculations. In a homogeneous system, on the other hand, the matrices are automatically diagonal in the wave vectork.

  17. P. Nozieres:Theory of Interesting Fermi Systems (Benjamin, New York, N.Y., 1964), Chapt. 4.

    MATH  Google Scholar 

  18. G. Strinati, H. J. Mattausch andW. Hanke:Phys. Rev. B,25, 2867 (1982).

    Article  ADS  Google Scholar 

  19. The different physical meaning of the singular and nonsingular terms of eq. (4.10) has also been discussed byS. T. Pantelides, D. J. Mickish andA. B. Kunz:Phys. Rev. B,10, 2602 (1974), where for ℏω>ɛF the two terms are called ɛ (N+1)a (e)) and ɛ (N)a (h)), in the order.

    Article  ADS  Google Scholar 

  20. G. Csanak, H. S. Taylor andR. Yaris:Adv. At. Mol. Phys.,7, 287 (1971), and references therein.

    Article  ADS  Google Scholar 

  21. R. S. Knox:Theory of Excitons (Academic Press, New York, N.Y., 1963).

    MATH  Google Scholar 

  22. G. Baym andL. P. Kadanoff:Phys. Rev.,124, 287 (1961);G. Baym:Phys. Rev.,127, 1391 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  23. G. Strinati:Phys. Rev. B,29, 5718 (1984), and references therein.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strinati, G. On the effective non-Hermitian eigenvalue problems for resonant levels. Il Nuovo Cimento D 4, 397–410 (1984). https://doi.org/10.1007/BF02451296

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02451296

PACS. 03.65

PACS. 71.45

Navigation