Il Nuovo Cimento D

, Volume 12, Issue 12, pp 1673–1687 | Cite as

Resonant and surface polaritons in quantum wells

  • F. Tassone
  • F. Bassani
  • L.C. Andreani


We show how the breaking of the translational invariance in a quantum well modifies the concept of polariton with respect to that defined for bulk material. Polaritons in quantum wells result from the combination of the exciton states with the radiation field. They are here obtained as the solutions of Maxwell equations with retardation, provided an appropriate nonlocal response function is used for the electric susceptibility, and Maxwell boundary conditions are imposed. We find two types of polaritons depending on the values of the in-plane wavevectork II: those atk II<ω/v (wherev=c/n is the velocity of light in the sample) are resonant with the radiation field in the barrier and those atk II>ω/v cannot be coupled to waves in the barrier. In both cases explicit expressions are given for radiative shifts and radiative broadenings as functions ofk II. Numerical results are obtained for GaAs-Ga1−x Al x As and for CuCl quantum wells and new experiments are suggested. The existence of resonant and surface polaritons justifies an interpretation of the temperature dependence of the radiative lifetime suggested by the same authors. It also decreases the radiative efficiency in the direction perpendicular to the planes and increases the radiative efficiency parallel to the planes with increasing temperature.

PACS 71.35

Excitons and related phenomena (including electron-hole drops) 

PACS 71.36

Polaritons (including photon-photon and photon-magnon interactions) 

PACS 78.65

Optical properties of thin films, surfaces, and and thin layer structures (including superlattices, heterostructures, and intercalation compounds) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. J. Hopfield:Phys. Rev.,112, 1555 (1958).MATHCrossRefADSGoogle Scholar
  2. [2]
    S. I. Pekar:Sov. Phys. JETP,33(7), 785 (1958);38(12), 1286 (1960).MathSciNetGoogle Scholar
  3. [3]
    V. M. Agranovich:Soc. Phys. JETP,37(11), 307 (1960).Google Scholar
  4. [4]
    A. Quattropani, L. C. Andreani andF. Bassani:Nuovo Cimento D,7, 55 (1986).Google Scholar
  5. [5]
    F. Bassani, F. Ruggiero andA. Quattropani:Nuovo Cimento D,7, 700 (1986).Google Scholar
  6. [6]
    D. Fröhlich, E. Mohler andP. Wiesner:Phys. Rev. Lett.,26, 554 (1971);D. Fröhlich, St. Kirchhoff, P. Kohler andW. Nieswand:Phys. Rev. B,40, 1976 (1989).CrossRefADSGoogle Scholar
  7. [7]
    B. Hönerlage, A. Bivas andVu Duy Phach:Phys. Rev. Lett.,41, 49 (1978).CrossRefADSGoogle Scholar
  8. [8]
    L. C. Andreani andF. Bassani:Phys. Rev. B,41, 7536 (1990).CrossRefADSGoogle Scholar
  9. [9]
    M. Nakayama:Solid State Commun.,55, 1053 (1985).CrossRefGoogle Scholar
  10. [10]
    L. C. Andreani, F. Tassone andF. Bassani: to be published inSolid State Commun.; see alsoE. Hanamura:Phys. Rev. B,38, 1228 (1988);V. M. Agranovich andO. A. Dubovskii:Zh. Eksp. Teor. Fiz. Pisma,3, 345 (1966) (English translation:JETP Lett.,3, 223 (1966)).Google Scholar
  11. [11]
    J. Feldmann, G. Peter, E. O. Göbel, P. Dawson, K. Moore, C. Foxon andR. J. Elliot:Phys. Rev. Lett.,59, 2337 (1987).CrossRefADSGoogle Scholar
  12. [12]
    M. Colocci, M. Gurioli, A. Vinattieri, F. Fermi, C. Deparis, J. Massies andG. Neu:Europhys. Lett.,12, 417 (1990).ADSGoogle Scholar
  13. [13]
    D. L. Abraham, A. Verider, Ch. Schönberger, H. P. Meier, D. J. Arent andS. F. Alvarado:Appl. Phys. Letters,56, 1564 (1990).CrossRefADSGoogle Scholar
  14. [14]
    R. Kubo:J. Phys. Soc. Jpn.,12, 570 (1957).MATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    A. Stahl andI. Baslev:Electrodynamics of the Semiconductor Band Edge (Springer-Verlag, Berlin, 1987).Google Scholar
  16. [16]
    G. Strinati:Riv. Nuovo Cimento,11, No. 12, 54 (1988).Google Scholar
  17. [17]
    L. C. Andreani, F. Bassani andA. Pasquarello: inSymmetry in Nature (Quaderni della Scuola Normale Superiore, Pisa, 1989), p. 19.Google Scholar
  18. [18]
    L. C. Andreani andA. Pasquarello:Europhys. Lett.,6, 259 (1988).ADSGoogle Scholar
  19. [19]
    P. M. Morse andH. Feshbach:Methods in Theoretical Physics (McGraw-Hill, New York, N.Y., 1953), p. 896.Google Scholar
  20. [20]
    R. G. Newton:Scattering Theory of Waves and Particles (McGraw-Hill, New York, N.Y., 1966), p. 593.Google Scholar
  21. [21]
    C. Zhang, M. Kohl andD. Heitmann:Superlattices and Microstructures,5, 65 (1989).CrossRefADSGoogle Scholar
  22. [22]
    G. Czajkowski andF. Tassone: to be published.Google Scholar
  23. [23]
    L. C. Andreani:Tesi di Perfezionamento in Fisica (Scuola Normale Superiore, Pisa), unpublished.Google Scholar

Copyright information

© Società Italiana di Fisica 1990

Authors and Affiliations

  • F. Tassone
    • 1
  • F. Bassani
    • 1
  • L.C. Andreani
    • 2
  1. 1.Scuola Normale SuperioreLausanneSwitzerland
  2. 2.IRRMAPHB-EcublensLausanneSwitzerland

Personalised recommendations