Advertisement

Il Nuovo Cimento D

, Volume 8, Issue 6, pp 582–596 | Cite as

Dislocations in anharmonic crystals

I.— Description of anharmonicity in isotropic solids
  • F. Iazzi
  • M. Omini
Article

Summary

In view of the second part of the work, concerning the problem of phonon scattering by dislocations, the anharmonic properties of an isotropic solid are simply described in terms of a single dimensionless parameter, which can be related both to the Grüneisen constant and to the pressure derivative of the bulk modulus in the low-temperature limit. The model is strictly justifiable only for atoms interacting through a volume-independent pair potential, but represents also a good starting point for an approximate description of anharmonicity in metals.

PACS. 61.70

Defects in crystals 

Riassunto

In previsione della seconda parte del lavoro, riguardante la diffusione di fononi da dislocazioni, si descrivono le proprietà anarmoniche di un solido isotropo in funzione di un unico parametro adimensionale, che può essere messo in relazione sia con la costante di Grüneisen sia con la derivata del modulo di elasticità rispetto alla pressione, nel limite di basse temperature. Il modello è strettamente giustificabile soltanto per atomi interagenti attraverso un potenziale a coppie indipendente dal volume, ma rappresenta altresì un buon punto di partenza per una descrizione approssimata dell’anarmonicità nei metalli.

Резюме

Имея ввиду вторую часть работы, которая посвящена проблеме рассеяния фононов на дислокациях, предлагается простое описание ангармонических свойств изотропных твердых тер в виде функции одного безразмерного параметра, который может быть связан с константой Грюнайзена и производной модуля объемной упругости по давлению в пределе низких температур. Предложенная модель непосредственно применима только к атомам, взаимодействующим через парный потенциал, не зависящий от объема, но может быть исполязована для приближенного описания ангармоничности в металлах.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    P. G. Klemens:Proc. Phys. Soc. London, Sect. A,68, 1113 (1955).MATHCrossRefADSGoogle Scholar
  2. (2).
    P. G. Klemens:Solid State Physics, Vol.7 (1958).Google Scholar
  3. (3).
    P. G. Klemens:Can. J. Phys.,35, 441 (1957).MATHGoogle Scholar
  4. (4).
    P. G. Klemens:Thermal Conductivity, Vol.1 (Academic Press, New York, N. Y., 1969), p. 63.Google Scholar
  5. (5).
    J. N. Lomer andH. M. Rosenberg:Philos. Mag.,4, 467 (1959).Google Scholar
  6. (6).
    W. R. G. Kemp, P. G. Klemens andR. J. Tainsh:Philos. Mag.,4, 845 (1959).Google Scholar
  7. (7).
    R. W. Klaffky, N. S. Mohan andD. H. Damon:Phys. Rev. B,11, 1297 (1975).CrossRefADSGoogle Scholar
  8. (8).
    P. Charsley, J. A. M. Salter andA. D. W. Leaver:Phys. Status Solidi,25, 531 (1968).Google Scholar
  9. (9).
    M. Sato andK. Sumino:J. Phys. Soc. Jpn.,36, 1075 (1974).CrossRefGoogle Scholar
  10. (10).
    D. Eckhardt andW. Wasserbäch:Philos. Mag.,37, 621 (1978).Google Scholar
  11. (11).
    Y. Kogure andY. Hiki:J. Phys. Soc. Jpn.,36, 1597 (1974).CrossRefGoogle Scholar
  12. (12).
    Y. Kogure andY. Hiki:J. Phys. Soc. Jpn.,38, 471 (1975).CrossRefGoogle Scholar
  13. (13).
    P. Grüner:Z. Naturforsch., Teil A,20, 1626 (1965).Google Scholar
  14. (14).
    H. Bross:Z. Phys.,189, 33 (1966).CrossRefGoogle Scholar
  15. (15).
    P. Grüner andH. Bross:Phys. Rev.,172, 583 (1968).CrossRefADSGoogle Scholar
  16. (16).
    A. Granato:Phys. Rev.,111, 740 (1958).CrossRefADSGoogle Scholar
  17. (17).
    J. A. Garber andA. Granato:J. Phys. Chem. Soc.,31, 1863 (1970).CrossRefGoogle Scholar
  18. (18).
    R. Zeyfang:Phys. Status Solidi,24, 221 (1967).Google Scholar
  19. (19).
    M. Kusunoki andH. Suzuki:J. Phys. Soc. Jpn.,26, 932 (1969).CrossRefGoogle Scholar
  20. (20).
    T. Suzuki andH. Suzuki:J. Phys. Soc. Jpn.,32, 164 (1972).CrossRefGoogle Scholar
  21. (21).
    S. G. O’Hara andA. C. Anderson:Phys. Rev. B,10, 574 (1974).CrossRefADSGoogle Scholar
  22. (22).
    A. C. Anderson:Phonon scattering by dislocations, inPhonon Scattering in Condensed Matter, Proceedings of the IV International Conference of Stuttgart, August 1983 (1983), p. 348.Google Scholar
  23. (26).
    M. Omini:Nuovo Cimento D,2, 1401 (1983).Google Scholar
  24. (27).
    M. Omini:Nuovo Cimento D,2, 1430 (1983).Google Scholar
  25. (28).
    M. Omini:Nuovo Cimento D,2, 1443 (1983).Google Scholar
  26. (29).
    M. Omini:Nuovo Cimento D,3, 263 (1984).Google Scholar
  27. (30).
    M. Omini:Nuovo Cimento D,3, 289 (1984).Google Scholar
  28. (31).
    D. Barbero andM. Omini:Nuovo Cimento D,3, 533 (1984).Google Scholar
  29. (32).
    F. Seitz:The Modern Theory of Solids (McGraw-Hill, New York, N. Y., 1940), p. 380.Google Scholar
  30. (33).
    D. C. Wallace:Thermodynamics of Crystals (Wiley and Sons, New York, N. Y., 1972).Google Scholar
  31. (34).
    F. Birch:Phys. Rev.,71, 809 (1947).MATHCrossRefADSGoogle Scholar
  32. (35).
    L. Landau andE. Lifschitz:Théorie de l’élasticitê (MIR, Moscow, 1967).Google Scholar
  33. (36).
    F. W. Sheard:Philos. Mag.,3, 1381 (1958).Google Scholar
  34. (37).
    W. B. Daniels andC. S. Smith:Phys. Rev.,111, 713 (1958).CrossRefADSGoogle Scholar
  35. (38).
    Y. Hiki andA. Granato:Phys. Rev.,144, 411 (1966).CrossRefADSGoogle Scholar
  36. (39).
    K. Salama andG. A. Alers:Phys. Rev.,161, 673 (1967).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica 1986

Authors and Affiliations

  • F. Iazzi
    • 1
  • M. Omini
    • 1
  1. 1.Dipartimento di Fisica del PolitecnicoTorino

Personalised recommendations