Journal of Mathematical Biology

, Volume 6, Issue 2, pp 177–196 | Cite as

On the theory of light absorption in non-homogeneous objects

The sieve-effect in one-component suspensions
  • Leonid Fukshansky


The semicontinuous cubic particle model for the sieve-effect in one-component suspensions is considered. Exact and approximate expressions for the most probable and average distributions of elementary homogeneous areas with respect to the number of particles are obtained. The conditions of validity of each expression are shown and the errors of approximation are estimated. The correlation between the absorbances of a suspension and the corresponding solution as a function of the parameters of suspension (absorptivity of the substance and number and size of particles) is obtained.

Key words

Sieve-effect Absorption statistics Light absorption in nonhomogeneous objects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Britz, S. J., Mackenzie J. M., Jr., Briggs, W. R.: Non-homogeneous pigment distribution, multiple cell layers, and the determination of phytochrome byin vivo spectrophotometry. Photochem. Photobiol.25, 137–140 (1977)Google Scholar
  2. 2.
    Duysens, L. N. M.: The flattening of the absorption spectrum of suspensions, as compared to that of solutions. Biochim. Biophys Acta19, 1–12 (1956)CrossRefGoogle Scholar
  3. 3.
    Holzwarth, G.: Ultraviolet spectroscopy of biological membranes. In: Membrane Molecular Biology, p. 228 (Fox, C. F. and Keith, A., eds.), Sinauer Associates, Stanford, Conn., 1972Google Scholar
  4. 4.
    Huang, K.: Statistical Mechanics, London-New York: Pergamon Press, 1964Google Scholar
  5. 5.
    Hudson, D. J.: Statistics, Geneva, New York: John Wiley & Sons, Inc.Google Scholar
  6. 6.
    Jahnke, E., Emde, F., Lösch, F.: Tafeln höherer Funktionen, Stuttgart: B. G. Teubner Verlagsgesellschaft (1960)Google Scholar
  7. 7.
    Kullback, S.: Information theory and statistic, New York: Chatman, 1956Google Scholar
  8. 8.
    Pittel, B.: A simple probabilistic model of mass behaviour. Problems of information transmission (Russian)3, No. 3, 265–273 (1967)MathSciNetGoogle Scholar
  9. 9.
    Rabinowitch, E. I.: In. Photosynthesis and Related Processes, Vol. II (1), p. 672, New York: Wiley-Interscience, 1951Google Scholar
  10. 10.
    Shannon, K. E.: A mathematical theory of communications. In: Bell System Techn. J.27, No. 3, 379–423 and No. 4, 623–656 (1948)Google Scholar
  11. 11.
    Spruit, C. J. P.: Estimation of phytochrome by spectrophotometryin vivo: instrumentation and interpretation. In: Phytochrome, pp. 77–104 (Mitracos, K., Shropshire, W., eds.), London: Academic Press, 1972Google Scholar
  12. 12.
    Spruit, C. J. P., Spruit, H. C.: Difference spectrum distortion in non-homogeneous pigment associations: abnormal phytochrome spectrain vivo, Biochim. Biophys. Acta275 401–413 (1972)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Leonid Fukshansky
    • 1
  1. 1.Biological Institute IIUniversity of FreiburgFreiburgFederal Republic of Germany

Personalised recommendations