Advertisement

Il Nuovo Cimento D

, Volume 8, Issue 3, pp 305–317 | Cite as

Normal-incidence exciton transmission and reflection spectra of semiconducting plane-parallel slabs

  • G. Czajkowski
  • P. Schillak
Article

Summary

Exciton transmission and reflection spectra of thin semiconducting crystals in the spectral region of excitonic polaritons are calculated by the Stahl's coherent wave approach. The influence of the crystal thickness and of the intrinsic damping is discussed. Calculations are performed for the lowest state of theA-exciton in CdS. Experimental results of Broseret al. (1985) are reproduced by inserting an appropriate energy-dependent damping.

PACS. 78.20

Optical properties and materials 

Riassunto

Si calcolano col metodo dell'onda coerente di Stahl gli spettri di trasmissione e riflessione degli eccitoni di cristalli sottili semiconduttori nella regione spettrale dei polaritoni eccitonici. Si discute l'influenza dello spessore dei cristalli e dello smorzamento intrinseco. Si eseguono calcoli dello stato inferiore dell'eceitoneA nel CdS. Si riproducono i risultati di Broseret al. inserendo un appropriato smorzamento dipendente dall'energia.

Резюме

На основе метода когерентных волн сформулированного в работах А. Стала рассматриваются спектры отражения и прохождения света через полупровадящие пластинки в спектральныы областях экситонных резонансов. Изучалась спектральная область в окрестности экситонаA n =1 в кристаллах CdS. Топшинаd пластинок изменялась от 9 мкм доd→∞ (попубесконечный кристалл). Теоретические спектры сравнены с результатами экспериментальных измерений Брозера по отражению света от кристаллической пластинки CdS толщиной 12 мкм. Для приближения теории к зксперементу приходится ввести затухание зависящее от частоты.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    J. J. Hopfield andG. G. Thomas:Phys. Rev.,132, 563 (1963).CrossRefADSGoogle Scholar
  2. (2).
    D. D. Sell, S. E. Stokowski, R. Dingle andJ. V. di Lorenzo:Phys. Rev. B,7, 4568 (1973).CrossRefADSGoogle Scholar
  3. (3).
    F. Patella, F. Evangelisti andM. Capizzi:Solid State Commun.,20, 23 (1976).CrossRefGoogle Scholar
  4. (4).
    S. I. Pekar:Ž. Ėksp. Teor. Fiz.,33, 1022 (1957).MATHGoogle Scholar
  5. (5).
    S. I. Pekar:Crystals Optics and Additional Light Waves, Frontiers in Physics, Vol.57 (Addison-Wesley, Reading, Mass., 1984).Google Scholar
  6. (6).
    J. J. Hopfield:J. Phys. Soc. Jpn. Suppl.,21, 77 (1966).Google Scholar
  7. (7).
    V. M. Agranovich andV. L. Ginzburg:Crystal Optics with Spatial Dispersion and Excitons (Springer-Verlag, Berlin, 1984).Google Scholar
  8. (8).
    A. Stahl:Solid State Commun.,49, 91 (1984).CrossRefADSGoogle Scholar
  9. (9).
    W. Huhn andA. Stahl:Phys. Status Solidi B,124, 167 (1984).Google Scholar
  10. (10).
    A. Stahl: inAdvances in Solid Physics, edited byP. Grosse, Vol.25 (Vieweg Braunschweig, 1985), p. 287.Google Scholar
  11. (11).
    A. Stahl:Surf. Sci.,134, 297 (1983).CrossRefGoogle Scholar
  12. (12).
    I. Balslev:Solid State Commun.,52, 351 (1984).CrossRefGoogle Scholar
  13. (13).
    D. Frank andA. Stahl:Solid State Commun.,52, 861 (1984).CrossRefGoogle Scholar
  14. (14).
    K. P. Dörpelkus: to be published (1986).Google Scholar
  15. (15).
    W. Huhn:Opt. Commun., to be published.Google Scholar
  16. (16).
    A. Stahl andI. Balslev:Electrodynamics of the Semiconductor Band Edge, Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1986), to be published.Google Scholar
  17. (17).
    L. Gotthard, A. Stahl andG. Czajkowski:J. Phys. C,17, 4865 (1984).CrossRefADSGoogle Scholar
  18. (18).
    L. Gotthard:Solid State Commun.,51, 975 (1984).CrossRefGoogle Scholar
  19. (19).
    L. Gotthard: Dissertation, RWTH Aachen, F.R.G., 1985.Google Scholar
  20. (20).
    Y. Masumoto, Y. Unuma, Y. Tanaka andS. Shionoya:J. Phys. Soc. Jpn.,47, 1844 (1979).CrossRefGoogle Scholar
  21. (21).
    M. V. Lebedev, M. I. Strashnikova, V. B. Timofeev andV. V. Chernyi:Ž. Ėksp. Teor. Fiz.,39, 366 (1984).Google Scholar
  22. (22).
    I. Broser, K.-H. Pantke andM. Rosenzweig:Phys. status Solidi B,132, K117 (1985).Google Scholar
  23. (23).
    B. Hönerlage, E. Levy, J. B. Grun, C. Klingshirn andK. Bohnert:Phys Rep.,124, 161 (1985).CrossRefADSGoogle Scholar
  24. (24).
    G. Czajkowski andP. Schillak:Acta Phys. Pol. A,69, 885 (1986).Google Scholar
  25. (25).
    A. Stahl:Phys. Status Solidi B,94, 221 (1979).Google Scholar
  26. (26).
    A. Stahl:Phys. Status Solidi B,106, 575 (1981).Google Scholar
  27. (27).
    I. Balslev andA. Stahl:Phys. Status Solidi B,111, 531 (1982).Google Scholar
  28. (28).
    A. Stahl andI. Balslev:Phys. Status Solidi B,113, 583 (1982).Google Scholar
  29. (29).
    F. W. Byron andR. W. Fuller:Mathematics of Classical and Quantum Physics, Vol.2 (Addison-Wesley, Reading, Mass., 1970).Google Scholar
  30. (30).
    F. Bassani andA. Quattropani:Helv. Acta Phys.,58, 224 (1985).Google Scholar
  31. (31).
    G. Czajkowski andK. Regiński: to be published (1986).Google Scholar
  32. (32).
    P. Schillak:Acta Phys. Pol., to be published (1986).Google Scholar

Copyright information

© Societ\`a Italiana di Fisica 1986

Authors and Affiliations

  • G. Czajkowski
    • 1
  • P. Schillak
    • 1
  1. 1.Department of Physics IIAcademy of Technology and AgricultureBydgoszezPoland

Personalised recommendations