Advertisement

Il Nuovo Cimento D

, Volume 5, Issue 3, pp 225–254 | Cite as

Light guides with thermohydrodynamic gas lenses (TGL)

  • O. G. Martynenko
  • N. I. Lemesh
Article

Summary

Light guides with thermohydrodynamic gas lenses (TGL) are studied from both the optical and the therno-fluid-dynamic point of view.

PACS. 42.20

Propagation and transmissions in inhomogenous media 

Glossary of symbols

x, y, z, ξ, η, ζ

the co-ordinates

the length of thermohydrodynamic gas lens (TGL)

r0

the lens radius

L

the distance between lenses

k

wave number

ε

dielectric constant

S

the surface of lens aperture

N

normal to the surface

V

eikonal

G,H0,Jn

Green's, Hankel and Bessel functions, respectively

α

polarizability of molecule

NM

the number of molecules per unit volume

P0

pressure

T

temperature

kB

Boltzmann's constant

n

refractive index

O

concentration

r

radial co-ordinate

qw

heat flux through the wall

Θ

dimensionless temperature

d

lens diameter

Pe

Peclet number

ω

flow velocity

χ

coefficient of temperature conductivity

λc

coefficient of thermal conductivity

ΔΦ

phase correction

v=L/f

confocal parameter

f

lens focal distance

D

optical force of the lens

Δ

the value of «optical wedge»

Re

Reyolds number

NΩ

ratatory Reynolds number

Gr

Grashof number

Rm

light guide modes

P

energy losses in light guide

λ

wave-length

ϕ

angle of light beam deflection

ω

speed of rotation

σ=Δσ/r0

corrector shift

M

power consumed by electric heater

Riassunto

Guide di luce con lenti a gas termoidrodinamici (TGL) sono studiate sia dal punto di vista ottico che da quello termofluidodinamico.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Quasioptics, Coll. papers, English translation (Mir, Moscow, 1966), p. 386.Google Scholar
  2. (2).
    N. S. Kapani:Fibre Optics (Mir, Moscow, 1969), p. 410.Google Scholar
  3. (3).
    D. Marcuse:Optical Waveguides (Mir, Moscow, 1974), p. 574.Google Scholar
  4. (4).
    Heathydrodynamic Light Guides, edited byB. M. Berkowsky, O. G. Martynenko, A. M. Zhilkin andO. N. Prokhov (Nauka i Tekhnika, Minsk, 1969), p. 198.Google Scholar
  5. (5).
    G. Goubau andF. Schwering:Zarubezh. Radioelectron.,11, 3 (1961).Google Scholar
  6. (6).
    R. B. Vaganov andN. N. Vojtovich:Radiotekh. Elektron.,11, No. 2, 339 (1966).Google Scholar
  7. (7).
    M. Prochazka, J. Pachmsn andJ. Muzic:Electron. Lett.,3, 73 (1963).Google Scholar
  8. (8).
    V. I. Anikin:Izv. Vyssh. Uchebn. Zaved. Radiotekh.,16, No. 8, 5 (1973).Google Scholar
  9. (9).
    A. A. Vainstein:Open Resonators and Open Waveguides (Sovetskoe Radio, Moscow, 1966), p. 314.Google Scholar
  10. (10).
    B. B. Katsenelenbaum:High-Freuquecy Electrodynamics (Nauka, Moscow, 1966), p. 240.Google Scholar
  11. (11).
    A. V. Luikov, P. M. Kolesnikov andO. G. Martynenko:Wave description of aerothermooptics, inEnergy Transfer in Channels, Coll. papers (Nauka i Technika, Minsk, 1970), p. 3.Google Scholar
  12. (12).
    H. Kogelnik andF. Li:Zarubezh. Radioelektron.,3, 102 (1967).Google Scholar
  13. (13).
    P. M. Kolesnikov, V. L. Kolpashchikov andO. G. Martynenko:Eigenvalues and eigenwaves of quasioptical system with nonquadratic correctors, inTheory of Electromagnetic Waves (Nauka, Moscow, 1971), p. 241.Google Scholar
  14. (14).
    A. Fox andT. Li:Resonance oscillations in the laser interferometer, inLasers, Coll. papers (Inostrannaya Literatura, Moscow, 1963), p. 18.Google Scholar
  15. (15).
    D. W. Berreman:Bell Syst. Tech. J.,43, 1476 (1964).Google Scholar
  16. (16).
    D. W. Berreman:J. Opt. Soc. Am.,55, No. 3, 239 (1965).ADSGoogle Scholar
  17. (17).
    J. Suematsu andK. Iga:JEEE Trans., MTT-14, No. 12, 146 (1966).Google Scholar
  18. (18).
    D. W. Berreman:Bell Syst. Tech. J.,43, 1469 (1964).Google Scholar
  19. (19).
    A. C. Beck:Bell Syst. Tech. J.,43, 1821 (1964).Google Scholar
  20. (20).
    B. S. Petukhov:Heat Transfer and Resistance at Laminar Flow of Fluid in Tubes (Energiya, Moscow, 1967), p. 322.Google Scholar
  21. (21).
    M. Jacob:Heat Transfer, Vol.1 (John Wiley and Sons, New York, N.Y., 1949), p. 193.Google Scholar
  22. (22).
    O. G. Martynenko, P. M. Kolesnikov andV. L. Kolpashchikov:Introduction into the Theory of Convective Gas Lenses (Nauka i Tekhnika, Minsk, 1972), p. 312.Google Scholar
  23. (23).
    D. Marcus:Bell Syst. Tech. J.,43, 1759 (1964).Google Scholar
  24. (24).
    W. H. Steier:JEEE Trans., MTT-13, 740 (1965).Google Scholar
  25. (25).
    O. G. Martynenko, B. M. Berkowsky andN. I. Lemesh:Thermohydrodynamic gas lens with twisted flow, inHeat and mass transfer, Vol.10, Coll. papers (Nauka i Tekhnika, Minsk, 1968), p. 586.Google Scholar
  26. (26).
    S. A. Fedyushin, A. G. Muradyan andG. N. Pustynstev:Experimental investigation of temperature profiles at laminar air flow in the heated circular tube, inConvection in Channels, Coll. papers (Heat and Mass Transfer Institute, Minsk, 1971), p. 196.Google Scholar
  27. (27).
    Study of Thermohydrodynamics Light Guides, Coll. papers (Heat and Mass Transfer Institute, Minks, 1970), p. 243.Google Scholar
  28. (28).
    O. G. Martynenko, N. I. Lemesh andO. I. Khozeev:Izv. Akad. Nauk B. SSR, Ser. Fiz. Energ.,4, 74 (1969).Google Scholar
  29. (29).
    O. G. Martynenko andR. I. Soloukhin:Revue Phys. Appl.,13, 329 (1900).Google Scholar
  30. (30).
    O. G. Martynenko, V. L. Kolpashchikov andV. I. Kalilets:Hydrodynamics and heat transfer of a rotating circular tube, inConvection in Channels, Coll. Papers (Heat and Mass Transfer Institute, Minsk, 1971), p. 3.Google Scholar
  31. (31).
    G. Gaubau andF. Schwering:JRE Trans., AP-9, 248 (1961).Google Scholar
  32. (32).
    G. Goubau andJ. R. Christian:Proc. JEEE,52, 1739 (1964).Google Scholar
  33. (33).
    D. Gloge:Bell Syst. Tech. J.,46, 721 (1967)Google Scholar
  34. (34).
    D. Gloge andW. H. Steier:Bell Syst. Tech. J.,47, 767 (1968).Google Scholar
  35. (35).
    I. P. Korshunov:Radiotekh. Elektron.,13, No. 2, 348 (1968).Google Scholar
  36. (36).
    A. A. Dyachenko andO. E. Shushpanov:Izv. Vyssh. Uchebn. Zaved. Radiofiz.,11, No. 5, 707 (1968).Google Scholar
  37. (37).
    R. B. Vaganov andA. B. Dogadkin:Radiotekh. Elektron.,10, No. 9, 1672 (1965).Google Scholar
  38. (38).
    V. P. Vardya, A. B. Dogadkin, A. A. Dyachenko, I. P. Korshunov, R. V. Matveev andO. E. Shushpanov:Radiotekh. Elektron.,18, No. 2, 391 (1973).Google Scholar
  39. (39).
    J. Suematsu:J. Inst. Eletron. Commun. Eng., Jpn. B 54, No. 6, 61 (1971).Google Scholar
  40. (40).
    J. R. Christian, G. Goubau andJ. Mink:JEEE Trans., MTT-15, 216 (1967).Google Scholar
  41. (41).
    O. E. Delang:Appl. Opt.,9, 1167 (1970).ADSCrossRefGoogle Scholar
  42. (42).
    A. A. Dyachenko:Investigation of Basis Parameters of Quasioptic Mirror Transission Lines in Visible Infra-red Band of Waves, Cand. diss. (Moscow, 1971), p. 202.Google Scholar
  43. (43).
    A. C. Beck:JEEE Trans., MTT-15, No. 7, 433 (1967).Google Scholar
  44. (44).
    P. Keiser:Bell Syst. Tech. J.,49, No. 1, 137 (1970).Google Scholar
  45. (45).
    Light Guides with Discrete Correction for Information Transmission, edited byA. G. Muradyan (Svyaz, Moscow, 1975), p. 240.Google Scholar

Copyright information

© Societá Italiana di Fisica 1985

Authors and Affiliations

  • O. G. Martynenko
    • 1
  • N. I. Lemesh
    • 1
  1. 1.Luykov Institute of Heat and Mass TransferByelorussia Academy of ScienceMinskUSSR

Personalised recommendations