Advertisement

Il Nuovo Cimento D

, Volume 6, Issue 6, pp 609–617 | Cite as

Electrostatic interaction on purple membrane: a spin label study onpH and ionic-strength effects

  • L. Sportelli
  • R. Bartucci
Article
  • 16 Downloads

Summary

The effects ofpH and ionic strength on the thermotropic phase transition behaviour of lipids of purple membrane have been investigated by electron spin resonance spectroscopy using the spinlabelling technique. The spin label 5-nitroxyl stearic acid located into the polar-head region of the lipid membrane shows atpH 5.0 and in the absence of 1:1 electrolyte an ordered → fluid phase transition at the temperature ofT t≃40°C which decreases to ≃36°C when thepH of the dispersion is increased to 9.0. The down-shift ofT t is more pronounced if the purple membrane is dispersed at bothpHs in 3 M NaCl. The shifts observed strongly suggest that ions affect the electrical properties of the negatively charged lipids of the membrane and, therefore, the structure of the polar region. On the other hand, the system of hydrocarbon chains of purple membrane results unaffected by charge variations on the membrane surface induced bypH and ionic-strength variations.

PACS. 87.20

Membrane biophysics 

Riassunto

Mediante risonanza di spin elettronico e la tecnica della marcatura di spin sono stati studiati gli effettti delpH e della forza ionica sulla transizione di fase termotropica dei lipidi della membrana purpurea del batterio H. halobium. Lo spin-label 5-NSA localizzato nella regione polare dei lipidi di membrana mostra apH 5.0 ed in assenza di elettroliti 1:1 una transizione di fase stato ordinato → stato fluido alla temperaturaT t≃40°C che scende a ≃36°C quando ilpH della dispersione è aumentato a 9.0. Lo spostamento osservato nella temperatura di transizione è piú pronunciato se la membrana purpurea è dispersa in una soluzione 3 M NaCl ai due valori dipH. L'effetto osservato indica che gli ioni influenzano le proprietà elettriche dei lipidi di membrana carichi negativamente e di conseguenza la struttura della regione polare del doppio strato. Al contrario, il nucleo idrofobico del doppio strato non risulta influenzato nè da variazioni dipH che di forza ionica.

Резюме

ВлияниеpH и ионной силы раствора на поведение липидов пурпурной мембраны при термотропных фазовых переходах исследовалось методом электронного спинового резонанса с использованием методики спиновой метки. Введение меченой 5-нитроксил стеариновой кислоты в области полярных головок липидов мембраны обнаруживает приpH=5.0 и в отсутствии 1:1 электролита «упорядоченный → жидкость» фазовый переход при температуреT t≃40°C, которая уменьшается до ≃36°C, когдаpH увеличивается до 9.0 Сдвиг температурыT t наиболее резко выражен, если пурпурная мембрана находится при тех ЗеpH в 3 M растворе NaCl. Наблюдаемые сдвиги указывают, что ионы влияют на электрические свойства отрицательно заряженных липидов мембраны и, следовательно, на структуру полярной области. С другой стороны, система гидрокарбонатных цепочек пурпурной мембраны не подвержена воздействию изменений заряда на поверхности мембраны, которые обусловлены изменениямиpH и ионной силы раствора.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    D. Oesterhelt andW. Stoeckenius:Proc. Natl. Acad. Sci. USA,70, 2853 (1973).CrossRefADSGoogle Scholar
  2. (2).
    D. Oesterhelt: inMembrane Proteins in Transport and Phosphorilation, edited byG. S. Azzone, M. E. Klingerberg, E. Quagliarello andN. Siliprandi (Elsevier, North-Holland, Amsterdam, 1974), p. 79.Google Scholar
  3. (3).
    R. Henderson andP. Unwin:Nature (London),257, 28 (1975).CrossRefGoogle Scholar
  4. (4).
    W. Stoeckenius, R. Lozier andR. Bogomolni:Biochim. Biophys. Acta,505, 215 (1979).Google Scholar
  5. (5).
    M. Eisenbach andS. R. Caplan: inCurrent Topics in Membranes and Transport, Vol.12, edited byF. Bronner andA. Kleinzeller (Academic Press, New York, N. Y., London, Toronto, Sydney, San Francisco, Cal., 1979), p. 165.Google Scholar
  6. (6).
    A. Ovchinnikov, N. Abdulaev andN. Modyanov:Annu. Rev. Biophys. Bioeng.,11, 445 (1982).CrossRefGoogle Scholar
  7. (7).
    W. Stoeckenius: inMembrane Transduction Mechanism, edited byR. Cone andJ. Dowling (Raven Press, New York, N. Y., 1979).Google Scholar
  8. (8).
    T. Kobayashi, H. Ohtani, J. Iwai, A. Ikegami andH. Uchiki:FEBS (Fed. Eur. Biochem. Soc.) Proc. Meet.,162, 1 (1983).Google Scholar
  9. (9).
    D. Oesterhelt andW. Stoeckenius: inMethods in Enzimology, Vol.31, edited byS. Fleischer andL. Packer (New York, N. Y., 1974), p. 667.Google Scholar
  10. (10).
    D. Oesterhelt andG. Krippahl:Ann. Microbiol. (Paris) B,134, 137 (1983).Google Scholar
  11. (11).
    P. C. Jost, D. A. McMillen, W. D. Morgan andW. Stoeckenius: inLight Transducing Membranes, edited byD. Deamer (Academic Press, New York, N. Y., San Francisco, Cal., London, 1978), p. 141.Google Scholar
  12. (12).
    D. Marsh andA. Watts: inLipid-Protein Interactions, Vol.2, edited byP. C. Jost andO. H. Griffith (Wiley, New York, N. Y., Chichester, Brisbane, Toronto, Singapore, 1982), p. 53.Google Scholar
  13. (13).
    D. Oesterhelt andW. Stoeckenius:Nature (London) New Biol.,233, 149 (1971).Google Scholar
  14. (14).
    L. J. Berliner:Spin Labelling. Theory and Applications (Academic Press, New York, N. Y., San Francisco, Cal., London, 1976).Google Scholar
  15. (15).
    D. Marsh: inMembrane Spectroscopy, edited byE. Grell (Springer-Verlag, Berlin, Heidelberg, New York, N. Y., 1981), p. 51.Google Scholar
  16. (16).
    C. Chignell andD. Chignell:Biochim. Biophys. Res. Commun.,62, 136 (1975).CrossRefGoogle Scholar
  17. (17).
    S. Schreier, C. F. Polnaszeck andJ. C. Smith:Biochim. Biophys. Acta,515, 357 (1978).Google Scholar
  18. (18).
    P. C. Jost andO. H. Griffith: inMethods in Enzimology, Vol.49 (1978).Google Scholar
  19. (19).
    G. Humphries andH. McConnell: inMethods in Experimental Physics, Vol.20 (1982), p. 53.Google Scholar
  20. (20).
    A. Herrmann, K. Arnold, G. Lassmann andR. Glaser:Acta Biol. Med. Ger.,41, 289 (1982).Google Scholar
  21. (21).
    K. Jacobson andD. Papahadjopoulos:Biochemistry,14, 152 (1975).CrossRefGoogle Scholar
  22. (22).
    H. Degani, A. Danon andS. R. Caplan:Biochemistry,19, 1626 (1980).CrossRefGoogle Scholar
  23. (23).
    H. Träuble andH. Eibl:Proc. Natl. Acad. Sci. USA,71, 214 (1974).CrossRefADSGoogle Scholar
  24. (24).
    F. Jänig:Biophys. Chem.,4, 309 (1976).CrossRefGoogle Scholar
  25. (25).
    H. Träuble, M. Teubner, P. Woolley andH. Eibl:Biophys. Chem.,4, 319 (1976).CrossRefGoogle Scholar
  26. (26).
    H. Eibl andA. Blume:Biochim. Biophys. Acta,553, 476 (1979).CrossRefGoogle Scholar
  27. (27).
    J. Th. G. Overbeek: inColloid Science, edited byH. R. Kruyt (Elsevier Publ. Co., Amsterdam, 1952).Google Scholar
  28. (28).
    D. Chapman, W. E. Peel, B. Kingston andT. H. Lilley:Biochim. Biophys. Acta,464, 260 (1977).CrossRefGoogle Scholar
  29. (29).
    D. Chapman, W. Hoffmann, A. D. Clark, M. Turner andS. Wyard:Biochim. Biophys. Acta,598, 178 (1980).CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1985

Authors and Affiliations

  • L. Sportelli
    • 1
  • R. Bartucci
    • 1
  1. 1.Dipartimento di FisicaLaboratorio di Biofisica Molecolare dell'Università della CalabriaArcavacata di RendeItalia

Personalised recommendations