, Volume 82, Issue 5, pp 403–409 | Cite as

A comparative study of myosins and prekeratin in epithelial cells of methacarn-fixed tissues

  • H. Puchtler
  • B. P. Barton
  • F. S. Waldrop
  • S. N. Meloan
  • J. L. Hobbs


Around the turn of the century, tonofibrils and contractile myofibrils were observed within the same cells. These findings have been largely forgotten. To clarify the topical relations of these proteins in epithelial cells, duplicate sections of methacarn-fixed human and canine tissues were treated with the tannic acid-phosphomolybdic acid (TP)-Levanol Fast Cyanine 5RN reaction for myosins and the PAP technic for prekeratin, respectively. In bronchi, lingual and sweat glands, liver and pancreas, myosin was confined to the terminal bar-terminal web system, including pericanalicular layers. Prekeratin occurred throughout the epithelium of bronchi and ducts; secretory cells showed little or no reaction. Observations on myosin in kidney confirmed data by Harper et al. (1970). The PAP technic colored transitional epithelium and collecting tubules intensely; convoluted tubules did not react. Staining of segments of Henle's loops varied from case to case. Both reactions colored thymic epithelial cells. In myoid cells of Hassall's corpuscles myosin was gradually replaced by prekeratin and keratin. Basal cells of epididymis reacted strongly with the PAP technic, but did not contain myosin.

Prekeratin is apparently identical with epidermin, whose composition and structure were well known in the 1950's. Epidermin undergoes chemical changes as cells move from the stratum basale to the stratum corneum. According to DAKO, the antibodies used in this study were prepared with prekeratin extracted from stratum corneum. Data in the literature and observations in this investigation indicate that some samples of antibodies do not react with all tonofilaments. This may be due to differences between prekeratins obtained from various layers of epidermis. The amount of demonstrable prekeratin is affected also by pathological conditions, e.g. renal diseases, AIDS. The functional significance of these variations is not yet clear.


Stratum Corneum Myoepithelial Cell Thymic Epithelial Cell Eccrine Sweat Gland Myoid Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altmannsberger M, Osborn M, Schauer A, Weber K (1981) Antibodies to different intermediate filament proteins. Lab Invest 45:427–434PubMedGoogle Scholar
  2. Archer FL, Kao V (1969) Immunohistochemical identification of actomyosin in myoepithelium of human tissues. Lab Invest 18:669–674Google Scholar
  3. Archer FL, Beck JS, Melvin JMO (1971) Localization of smooth muscle protein in myoepithelium by immunofluorescence. Am J Pathol 63:109–116PubMedGoogle Scholar
  4. Baccetti B, Burrini AG, Pallini V (1980) Actin as a component of the cytoskeleton in vertebrate spermatozoa. Eur J Cell Biol 22:336Google Scholar
  5. Barton BP, Hobbs JL, Waldrop FS, Meloan SN, Puchtler H (1984) Effects of fixation on PAP reactions for prekeratin: formalin versus methacarn. Acta Anat 120:10Google Scholar
  6. Billroth T (1958) Über die Epithelialzellen der Froschzunge, sowie über den Bau der Cylinder- und Flimmerepithelien und ihr Verhältnis zum Bindegewebe. Arch Anat Physiol 1858:159–177Google Scholar
  7. Bretscher A, Weber K (1978) Localization of actin and microfilament associated proteins in the microvilli terminal web of the intestinal brush border by immunofluorescence microscopy. J Cell Biol 79:839–845PubMedCrossRefGoogle Scholar
  8. Brettauer J, Steinach S (1857) Untersuchungen über das Cylinderepithelium der Darmzotten und seine Beziehung zur Fettresorption. Sitzungsber Akad Wiss Wien, Math-Naturwiss Kl 23:303–313Google Scholar
  9. Burnasheva SA (1958) Properties of spermosin, the contractile protein of spermatozoa. Biokhimia (transl from Russian: Biochemistry) 23:523–527Google Scholar
  10. Clark SL (1963) The thymus of mice of strain 129/J, studied with the electron microscope. Am J Anat 112:1–33PubMedCrossRefGoogle Scholar
  11. Crewther WG, Fraser RDB, Lennox FG, Lindley H (1965) The chemistry of keratins. Adv Protein Chem 20:191–346PubMedGoogle Scholar
  12. Denk H, Franke WW, Eckerstorfer R, Schmid E, Kerjaschki D (1979) Formation and involution of Mallory bodies (“alcoholic hyalin”) in murine and human liver revealed by immunofluorescence microscopy with antibodies to prekeratin. Proc Natl Acad Sci USA 76:4112–4121PubMedCrossRefGoogle Scholar
  13. Downes AM, Sharry LF, Rogers GE (1963) Separate synthesis of fibrillar and matrix proteins in the formation of keratin. Nature 199:1059–1061PubMedCrossRefGoogle Scholar
  14. Drenckhahn D, Groeschel-Stewart U, Unsicker K (1977) Immuno-fluorescence microscopic demonstration of myosin and actin in salivary glands and exocrine pancreas of the rat. Cell Tissue Res 183:273–280PubMedCrossRefGoogle Scholar
  15. Drenckhahn D, Steffens R, Groeschel-Stewart U (1980) Immunocytochemical localization of myosin in the brush border region of the intestinal epithelium. Cell Tissue Res 205:163–166PubMedCrossRefGoogle Scholar
  16. Ebner Wv (1872) Über die Anfänge der Speichelgänge in den Alveolen der Speicheldrüsen. Arch Mikrosk Anat 8:481–513Google Scholar
  17. Follis RH (1948) The pathology of nutritional disease. CC Thomas, SpringfieldGoogle Scholar
  18. Fraser RDB, MacRae TP, Rogers GE (1972) Keratins: their composition, structure and biosynthesis. CC Thomas, Springfield, Illinois.Google Scholar
  19. Gillespie JM (1967) The high sulfur proteins of α-keratins: their relation to fiber structure and properties. J Polym Sci, Part C 20:201–214Google Scholar
  20. Gumucio J, Feldkamp C, Bernstein IA (1967) Studies on localization of histidine-rich peptide material present in epidermis of newborn rat. J Invest Dermatol 49:545–551PubMedCrossRefGoogle Scholar
  21. Gusterson BA, Warburton MJ, Mitchell D, Ellison M, Nevile AM, Rudland PS (1982) Distribution of myoepithelial cells and basement membrane proteins in the normal breast and in benign and malignant breast diseases. Cancer Res 42:4763–4770PubMedGoogle Scholar
  22. Gusterson BA, Warburton MJ, Mitchell D, Kraft N, Hancock WW (1984) Invading squamous cell carcinoma can retain a basal lamina. An immunohistochemical study using a monoclonal antibody to type IV collagen. Lab Invest 51:82–87PubMedGoogle Scholar
  23. Haelst Uv (1967) Light and electron microscopic study of the normal and pathological thymus of the rat. I. The normal thymus. Z Zellforsch 77:534–553PubMedCrossRefGoogle Scholar
  24. Hammar JA (1909) Fünfzig Jahre Thymusforschung: Kritische Übersicht der normalen Morphologie. Ergeb Anat Entwicklungsgesch 19:1–274Google Scholar
  25. Harper JT, Puchtler H, Meloan SN, Terry MS (1970) Light microscopic demonstration of myoid fibrils in renal epithelial, mesangial and interstitial cells. J Microsc 91:71–85PubMedGoogle Scholar
  26. Hart C (1914) Thymusstudien. IV Die Hassallschen Körperchen. Virchows Arch 217:239–255CrossRefGoogle Scholar
  27. Heidenhain M (1899) Über die Struktur der Darmepithelzellen. Arch Mikrosk Anat 54:184–224Google Scholar
  28. Heidenhain M (1911) Die Fadengerüstlehre und ihre Objekte. In: Bardeleben K v (ed) Handbuch der Anatomie des Menschen, vol 8, part 2. Gustav Fischer, Jena, pp. 439–1110Google Scholar
  29. Heidenhain M, Werner F (1924) Über die Epithelien des Corpus epididymidis beim Menschen. Z. Anat Entwicklungsgesch 72:556–608CrossRefGoogle Scholar
  30. Hertwig G (1929) Allgemeine mikroskopische Anatomie der lebenden Masse. In: Möllendorff M v (ed) Handbuch der mikroskopischen Anatomie des Menschen, vol 1. Springer, Berlin, pp 1–420Google Scholar
  31. Holund B, Clausen PP, Clemmensen I (1981) The influence of fixation and tissue preparation on the immunohistochemical demonstration of fibronectin in human tissues. Histochemistry 72:291–299PubMedCrossRefGoogle Scholar
  32. Ito T, Hoshino T (1966) Fine structure of the epithelial reticular cells of the medulla of the thymus in the golden hamster. Z Zellforsch 69:311–318PubMedCrossRefGoogle Scholar
  33. Kaku T, Ekem JK, Lindayen C, Bailey DJ, van Nostrand AWP, Farber E (1983) Comparison of formalin- and acetone-fixation for immunohistochemical detection of carcinoembryonic antigen (CEA) and keratin. Am J Clin Pathol 80:806–815PubMedGoogle Scholar
  34. Kendrew JC (1954) Structure proteins I. In: Neurath H, Bailey K (eds) The proteins, vol II, part B. Academic Press, New York, pp 845–950Google Scholar
  35. Koelliker A (1954) Manual of human microscopical anatomy. (Transl by G Busk, T Huxley; DaCosta, ed). Lippincott, Grambo & Co, PhiladelphiaGoogle Scholar
  36. Laden EL, Linden G, Erickson JO (1955) Study of normal skin with the electron microscope. AMA Arch Dermatol 71:219–223Google Scholar
  37. Langman J (1981) Medical embryology, 4th ed. Williams & Wilkins, BaltimoreGoogle Scholar
  38. Lazarides E (1982) Intermediate filaments: a chemically heterogeneous, developmentally regulated class of proteins. Annu Rev Biochem 51:219–250PubMedCrossRefGoogle Scholar
  39. Lenard J, Singer SJ (1968) Alterations of the conformation of proteins in red blood cell membranes and in solutions by fixatives used in electron microscopy. J Cell Biol 37:117–121PubMedCrossRefGoogle Scholar
  40. Low BW (1953) The structure and configuration of amino acids, peptides and proteins. In: Neurath H, Bailey K (eds) The proteins, vol I, part A. Academic Press, New York, pp 235–391Google Scholar
  41. Meloan SN, Puchtler H (1982) Mallory bodies: lesions of hepatocytes containing proteins of the keratin-myosin-epidermin group. Histochemistry 75:445–460PubMedGoogle Scholar
  42. Mooseker MS, Pollard TD, Fujiwara K (1978) Characterization and localization of myosin in the brush border of intestinal epithelial cells. J Cell Biol 79:444–453PubMedCrossRefGoogle Scholar
  43. Nadji M, Morales AR (1983) Immunoperoxidase: Part I. The technique and its pitfalls. Lab Med 14:767–771Google Scholar
  44. Nelson L (1967) Sperm motility. In: Metz CB, Monroy A (eds) Fertilization: comparative morphology, biochemistry and immunology, vol 1. Academic Press, New York, pp 27–97Google Scholar
  45. Odland GF (1971) Histology and fine structure of the epidermis. In: Helwig EB, Mostofi FK (ed) The skin. Williams & Wilkins, Baltimore, pp 28–46Google Scholar
  46. Pease DC (1968a) The filamentous organization of myosin in mammalian smooth muscle. Anat Rec 160:407Google Scholar
  47. Pease DC (1968b) Myoid features of renal corpuscles and tubules. J Ultrastruct Res 23:304–320CrossRefGoogle Scholar
  48. Pelliniemi LJ, Dym M, Fujiwara K, Pollard TD, Fawcett DW (1980) Myosin in epithelial and peritubular cells of the rat testis and epididymis. Eur J Cell Biol 22:335Google Scholar
  49. Prenant A (1899) Cellules vibratiles et cellules à plateau. Bibliogr Anat 7:21–38Google Scholar
  50. Puchtler H (1956) Histochemical analysis of terminal bars. J Histochem Cytochem 4:439Google Scholar
  51. Puchtler H (1958) Histochemical analysis of the “terminal web” in the epithelial cells of rat intestine. Anat Rec 130:360Google Scholar
  52. Puchtler H, Waldrop FS, Terry MS, Conner HM (1969a) A combined PAS-myofibril stain for demonstration of early lesions of striated muscle. J Microsc 89:329–338PubMedGoogle Scholar
  53. Puchtler H, Sweat F, Terry MS, Conner HM (1969b) Investigation of staining, polarization and fluorescence microscopic properties of myoendothelial cells. J Microsc 89:95–104PubMedGoogle Scholar
  54. Puchtler H, Waldrop FS, Meloan SN, Terry MS, Conner HM (1970) Methacarn (methanol-Carnoy) fixation: practical and theoretical consideration. Histochemie 21:97–116PubMedCrossRefGoogle Scholar
  55. Puchtler H, Waldrop FS, Carter MG, Valentine LS (1974) Investigation of staining, polarization and fluorescence microscopic properties of myoepithelial cells. Histochemistry 40:281–289PubMedCrossRefGoogle Scholar
  56. Puchtler H, Waldrop FS, Meloan SN, Branch BW (1975a) Myoid fibrils in epithelial cells: studies of intestine, biliary and pancreatic pathways, trachea, bronchi, and testis. Histochemistry 44:105–118PubMedCrossRefGoogle Scholar
  57. Puchtler H, Meloan SN, Branch BW, Gropp S (1975b) Myoepithelial cells in human thymus: staining, polarization and fluorescence microscopic studies. Histochemistry 45:163–176PubMedCrossRefGoogle Scholar
  58. Ranvier L (1889) Traité technique d'histologie, 2 éd, Libraire F. Savy, ParisGoogle Scholar
  59. Rochanawutanon M, Puchtler H, Waldrop FS, Meloan SN (1984) Histochemical observations on a case of AIDS. Georgia J Sci 42:32Google Scholar
  60. Rudall KM (1952) The proteins of mammalian epidermis. Adv Protein Chem 7:253–290PubMedGoogle Scholar
  61. Schwalbe G (1872) Beiträge zur Kenntnis der Drüsen in den Darmwandungen insbesondere der Brunner'schen Drüsen. Arch Mikrosk Anat 8:92–140Google Scholar
  62. Sternberger LA (1979) Immunocytochemistry, 2nd ed. John Wiley & Sons, New YorkGoogle Scholar
  63. Studnička FK (1929) Die Organisation der lebendigen Masse. In: Möllendorff W v (ed) Handbuch der mikroskopischen Anatomie des Menschen, vol 1, part 1. Springer, Berlin, pp 421–568Google Scholar
  64. Strauss AJL, Kemp PG, Douglas SD (1966) Myasthenia gravis. Lancet 1:772–773PubMedCrossRefGoogle Scholar
  65. Trenchev P, Dorling J, Webb J, Holborow EJ (1976) Localization of smooth muscle-like contractile proteins in kidney by immunoelectron microscopy. J Anat 121:85–95PubMedGoogle Scholar
  66. Van der Geld H, Feldkamp TEW, Oosterhuis HJGH (1964) Reactivity of myasthenia gravis serum γ-globulin with skeletal muscle and thymus demonstrated by immunofluorescence. Proc Soc Exp Biol Med 115:782–785Google Scholar
  67. Van de Velde RL, Friedman NB (1966) The thymic “myoidzellen” and myasthenia gravis. J Am Med Assoc 198:287–288CrossRefGoogle Scholar
  68. Virchow R (1857) Über das Epithel der Gallenblase und über einen intermediären Stoffwechsel des Fettes. Virchows Arch 11:574–578CrossRefGoogle Scholar
  69. Waldrop FS, Puchtler H (1977) Kernechtrot: a convenient nuclear stain after ferro or ferricyanide reactions. Stain Technol 52:237PubMedGoogle Scholar
  70. Waldrop FS, Puchtler H, Akamatsu Y (1976) Staining of keratin and keratohyalin with the reactive dye Levafix Red Violet E-2BL. Stain Technol 51:219–225PubMedGoogle Scholar
  71. Warburton MJ, Mitchell D, Ormerod EJ, Rudland P (1982) Distribution of myoepithelial cells and basement membrane proteins in the resting, pregnant, lactating and involuting rat mammary gland. J Histochem Cytochem 30:667–676PubMedGoogle Scholar
  72. Ward WH, Lundgren HP (1954) The formation, composition and properties of the keratins. Adv Protein Chem 9:243–297PubMedCrossRefGoogle Scholar
  73. Weber K, Osborn M, Franke WW (1980) Antibodies against merokeratin from sheep wool decorate cytokeratin filaments in nonkeratinizing epithelial cells. Eur J Biol 23:110–114Google Scholar
  74. Weissenberg R (1907) Über die quergestreiften Zellen der Thymus. Arch Mikrosk Anat 70:193–226Google Scholar
  75. Young LG, Nelson L (1968) Viscometric analysis of the contractile proteins of mammalian spermatozoa. Exp Cell Res 51:34–44PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • H. Puchtler
    • 1
  • B. P. Barton
    • 1
  • F. S. Waldrop
    • 1
  • S. N. Meloan
    • 1
  • J. L. Hobbs
    • 1
  1. 1.Department of PathologyMedical College of GeorgiaAugustaUSA

Personalised recommendations