Advertisement

Il Nuovo Cimento D

, Volume 11, Issue 1–2, pp 271–289 | Cite as

A real-time approach to nonequilibrium quantum field theory of relativistic fields

  • M. Guida
Article

Summary

The basic ingredients of a real-time nonequilibrium quantumfield theoretical approach, based on a generalization of thermofield dynamics, are briefly reviewed. In particular, the possible advantages of its application to relativistic models, as the φ4-model for the Higgs field are pointed out. Also the differences between the above approach and others using the Feynman's path integral method are underlined.

PACS 03.70

Theory of quantized fields 

PACS 11.10

Field theory 

PACS 05.30

Quantum statistical mechanics 

PACS 05.70.Ln

Nonequilibrium thermodynamics irreversible processes 

Riassunto

Si illustrano brevemente i fondamenti di un approccio di teoria dei campi del non equilibrio nel dominio dei tempi reali, basato su una generalizzazione del formalismo della thermo field dynamics. In particolare, vengono messi in evidenza i possibili vantaggi della sua applicazione allo studio di modelli relativistici, come quello φ4 del campo di Higgs. Si sottolineano poi le differenze con altri approcci che fanno uso della tecnica degli integrali di cammino à la Feynman.

Резюме

Анализируются основные составные части теоретического подхода с использованием вещестенного времени к неравномерной квантовой теории поля, который основан на обобщении термо-полевой динамики. В частности, отмечаются возможные преимущества применения этого подхода к релятивистским моделям, как например, к φ4-для поля Хиггса. Также обсуждаются различия между предложенным подходом и другими подходами, использующими Фейнмановский метод интегрирования по траекториям.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    E. V. Shuryak:Phys. Rep. C,61, 71 (1980).MathSciNetCrossRefADSGoogle Scholar
  2. (2).
    A. D. Linde:Rep. Prog. Phys.,42, 389 (1979);A. H. Guth andE. J. Weinberg:Phys. Rev. D,23, 876 (1981);K. Sato: inGrand Unification Theories and Related Topics 1981, Proceedings of the IV Kyoto Summer Institute, edited byM. Konuma andT. Maskawa (World Scientific, Singapore, 1981).CrossRefADSGoogle Scholar
  3. (3).
    A. Albrecht, P. J. Steinhardt, M. S. Turner andF. Wilczek:Phys. Rev. Lett.,48, 1437 (1982);A. Hosoya andM. Sakagami:Phys. Rev. D,29, 2228 (1984).CrossRefADSGoogle Scholar
  4. (4).
    A. Hosaya andK. Kajantie:Nucl. Phys. B,250, 666 (1985).CrossRefADSGoogle Scholar
  5. (5).
    A. O. Caldeira andA. J. Leggett:Phys. Rev. Lett.,46, 211 (1981);Ann. Phys. 149, 374 (1983);V. A. Rubakov:Nucl. Phys. B,245, 481 (1984);Phys. Lett. B,148, 280 (1980);JETP Lett.,39, 89 (1984).CrossRefADSGoogle Scholar
  6. (6).
    N. P. Landsman:Nonshell unstable particles in thermal field theory», preprint University of Amsterdam (1988) ((to appear inAnn. Phys. (N.Y.)).Google Scholar
  7. (7).
    N. P. Landsman andCh. G. Van Weert:Phys. Rep.,145, 141 (1987).MathSciNetCrossRefADSGoogle Scholar
  8. (8).
    T. Matsubara:Prog. Theor. Phys.,14, 351 (1955);H. Ezawa, Y. Tomozawa andH. Umezawa:Nuovo Cimento,5, 810 (1957).MATHMathSciNetCrossRefADSGoogle Scholar
  9. (9).
    C. W. Bernard:Phys. Rev. D,9, 3312 (1974);L. Dolan andR. Jackiw:Phys. Rev. D,9, 3320 (1974);S. Weinberg:Phys. Rev. D,9, 3357 (1974).CrossRefADSGoogle Scholar
  10. (10).
    J. Schwinger:J. Math. Phys. (N.Y.),2, 407 (1961);L. V. Keldysh: Ž. Éksp. Teor. Phys. (USSR),47, 1515 (1964) [Sov. Phys. JETP,20, 1018 (1965)];R. A. Craig: J. Math. Phys. (N.Y.),9, 605 (1968);R. Mills:Propagators for Many-Particle Systems (Gordon and Breach Science Publish., New York, N.Y., 1969);A. J. Niemi andG. W. Semenoff:Nucl. Phys. B,230 [FS10], 181 (1984).MATHMathSciNetCrossRefGoogle Scholar
  11. (11).
    E. M. Lifshitz andL. P. Pitaevski:Physical Kinetics (Pergamon Press, New York, N.Y., 1981).Google Scholar
  12. (12).
    M. Marinaro: inProceedings of the International Meeting «New Avenues in Quantum Mechanics and General Relativity (Amalfi, Italia, 1984);Phys. Rep.,137, 81 (1986).Google Scholar
  13. (13).
    G. W. Semenoff andN. Wiess:Phys. Rev. D,31, 689 (1985).CrossRefADSGoogle Scholar
  14. (14).
    L. Leplae, F. Mancini andH. Umezawa:Phys. Rep. C,10, 151 (1974);Y. Takahashi andH. Umezawa:Collect. Phenom.,2, 55 (1975);H. Matsumoto:Fortsch. Phys.,25, 1 (1977);H. Umezawa, H. Matsumoto andM. Tachiki:Thermo Field Dynamics and Condensed States (North-Holland, Amsterdam, 1982).CrossRefADSGoogle Scholar
  15. (15).
    J. von Neumann:Math. Ann.,104, 570 (1931).MATHMathSciNetCrossRefGoogle Scholar
  16. (16).
    F. Mancini:Quantum Field Theory and Condensed Matter Physics, inQuantum Field Theory, edited byF. Mancini (Proceedings of the International Symposium in honour of H. Umezazawa's 60th birthday, Positano, Italia, June 5–7, 1985), (North-Holland, Amsterdam, 1986).Google Scholar
  17. (17).
    H. Umezawa:Thermo Field Dynamics, inProceedings of the CAP-NSERC Summer, Institute in Theoretical Physics, Vol.1, edited byF. C. Khanna andH. Umezawa (World Scientific, Singapore, 1988)Google Scholar
  18. (18).
    A. Hosoya, M. Sakagami andM. Takao:Ann. Phys. (N.Y.),154, 229 (1984).MathSciNetCrossRefADSGoogle Scholar
  19. (19).
    L. Parker:Phys. Rev. Lett.,21, 562 (1968);Phys. Rev.,183, 1057 (1969); inAsymptotic Structure of Space-Time, edited byF. P. Esposito andL. Witten (Plenum Press, New York, N.Y., 1977), p. 107; inRecent Developments in Gravitation, Cargèse, 1978, eidted byM. Lévy andS. Deser (Plenum Press, New York, N.Y., 1979), p. 219;S. W. Hawking:Nature (London),248, 30 (1974);Commun. Math. Phys.,43, 199 (1975).CrossRefADSGoogle Scholar
  20. (20).
    T. Arimitsu andH. Umezawa:Prog. Theor. Phys.,86, 1475 (1986);M. Guida:Doctor Thesis (Università di Salerno, Italia, 1987) (unpublished); talk given at the53th General Meeting of the Italian Physical Society (Napoli, October 12–17, 1987);T. Arimitsu, M. Guida andH. Umezawa:Europhys. Lett.,3, 277 (1987);Physica, A,148, 1 (1988);T. Arimitsu, H. Umezawa andY. Yamanaka:J. Math. Phys. (N.Y.),28, 2741 (1987).MathSciNetGoogle Scholar
  21. (21).
    H. Matsumoto:Z. Phys. C,33, 201 (1986);Fortschr. Phys.,25, 475 (1987).CrossRefGoogle Scholar
  22. (22).
    H. Matsumoto, F. Mancini andM. Marinaro:Europhys. Lett.,4, 153 (1987).ADSGoogle Scholar
  23. (23).
    M. Guida, F. Mancini, M. Marinaro andH. Matsumoto: inPath Summation: Achievements and Goals, edited byS. Lundqvist, A. Ranfagni, V. Sa-Yakanit andL. S. Schulman (Proceedings of the Adriatico Research Conference on Path-Integral Method and its Applications, Trieste, September 1–4 1987) (World Scientific, Singapore, 1988).Google Scholar
  24. (24).
    H. Araki andE. J. Woods:J. Math. Phys. (N.Y.),4, 637 (1963);H. Araki andW. Wyss:Helv. Phys. Acta,37, 136 (1964);R. Haag, N. W. Hugenholtz andM. Winnihk:Commun. Math. Phys.,5, 215 (1967).MathSciNetCrossRefGoogle Scholar
  25. (25).
    I. Ojima:Ann. Phys.,137, 1 (1981).MathSciNetCrossRefADSGoogle Scholar
  26. (26).
    H. Matsumoto, Y. Nakano, H. Umezawa, F. Mancini andM. Marinaro:Prog. Theor. Phys.,70, 599 (1983);H. Matsumoto, Y. Nakano andH. Umezawa:J. Math. Phys. (N.Y.),25, 3076 (1984).CrossRefADSGoogle Scholar
  27. (27).
    M. Schmutz:Z. Phys. B,33, 97 (1978).MathSciNetGoogle Scholar
  28. (28).
    U. Fano:Rev. Mod. Phys.,29, 74 (1957);J. A. Crawford:Nuovo Cimento,10, 698 (1958).MATHMathSciNetCrossRefADSGoogle Scholar
  29. (29).
    H. Umezawa andT. Arimitsu:Prog. Theor. Phys. Suppl.,86, 243 (1986);H. Umezawa:A Nonequilibrium Theory for Phase Transitions and the Expanding Universe in Symmetries in Science II, edited byB. Gruber andR. Lenczewski (Proceedings of the International Symposium on Symmetries in Science II, Carbondale, USA, March 24–26, 1986) (Plenum Press, New York, N.Y., 1986), p. 517.MathSciNetGoogle Scholar
  30. (30).
    E. Del Giudice, R. Manka, M. Milani andG. Vitiello:Phys. Lett. B,206, 661 (1988);E. Del Giudice, N. P. Landsman andG. Vitiello, in preparationCrossRefGoogle Scholar
  31. (31).
    H. Matsumoto, F. Mancini andM. Marinaro:J. Phys. A,20, 6543 (1987);The effect of initial state correlations in self-consistent perturbation scheme, preprint Università di Salerno (1987).CrossRefADSGoogle Scholar
  32. (32).
    H. Matsumoto:Self-consistent perturbation method in thermo field dynamics, preprint Università di Salerno (1987).Google Scholar
  33. (33).
    H. Matsumot, M. Guida, F. Mancini andM. Marinaro: in preparation.Google Scholar
  34. (34).
    M. Sakagami andT. Kubota:Prog. Theor. Phys.,76, 548 (1986).CrossRefADSGoogle Scholar
  35. (35).
    A. J. Niemi andG. W. Semenoff:Ann. Phys.,152, 105 (1984).CrossRefADSGoogle Scholar
  36. (36).
    D. Mugnai andA. Ranfagni:Europhys. Lett.,6, 1 (1987).ADSGoogle Scholar
  37. (37).
    M. Guida, F. Mancini, M. Marinaro, A. Ranfagni, D. Mugnai andA. Agresti:Dissipative tunnelling in anharmonic potentials: spontaneous symmetry breaking in a biased φ4-model (talk given byA. Ranfagni at the LXXIV General Meeting of the Italian Physical Society, Urbino, October 6–11, 1988)).Google Scholar

Copyright information

© Società Italiana di Fisica 1989

Authors and Affiliations

  • M. Guida
    • 1
  1. 1.Instituut voor Theoretische FysicaUniversiteit van AmsterdamAmsterdamThe Netherlands

Personalised recommendations