Ordinary superconductivity and path integrals


Functional methods are very powerful in dealing with ordinary superconductivity. The ring geometry is discussed in mean field by means of a Higgs-type Ginzburg-Landau Lagrangian. The presence of a junction in the ring, as in SQUIDs, leads to a θ-vacuum as the ground state. The variable θ is related to the phase difference of the order parameter at the junction and Josephson relations are obtained semi-classically. The system is, to any purpose, in two space dimensions, what can imply exotic statistics.


I metodi dell'integrazione funzionale sono molto adatti a trattare l'ordinaria superconduttività. È discussa una geometria ad anello in campo medio per mezzo di una Lagrangiana di Ginzburg-Landau del tipo di Higgs. La presenza nell'anello di una giunzione (come in uno SQUID) porta and un «θ-vacuum» come stato fondamentale. La variabile θ è legata alla differenza di fase del parametro d'ordine in corrispondenza della giunzione e le relazioni di Josephson vengono riottenute semiclassicamente. Il sistema studiato è bidimensionale e può ammettere statistiche esotiche.


Функциональные методы являются очень удобными для рассмотрения обыкновенной сверхпроводимости. Обсуждается кольцевая геометрия в среднем поле с помщью Лагранжиана Гинзбурга-Ландау типа Хиггса. Наличие перехода в кольце, как в свепрхроводящем квантовом интерферометрическом датчике, приводит к θ-вакууму, как основному состоянию. Переменная θ связана с разностью фаз для параметра упорядоченности в переходе. Полуклассически получаются соотношения Джозефсона. Рассматриваемая система является двумерной в пространстве, что может подразумевать экзотическую статистику.

This is a preview of subscription content, access via your institution.


  1. (1)

    J. S. Langer:Phys. Rev.,134, A553, (1964).

    Article  ADS  Google Scholar 

  2. (2)

    H. Kleinert:Fortschr. Phys.,26, 565 (1978).

    MathSciNet  Google Scholar 

  3. (3)

    V. Ambegaokar: inPercolation, Localization and Superconductivity, edited byA. M. Goldman andS. A. Wolf (Plenum, New York, N.Y., 1984).

    Google Scholar 

  4. (4)

    V. Ambegaokar, U. Eckern andG. Schön:Phys. Rev. Lett.,48, 1745 (1982).

    Article  ADS  Google Scholar 

  5. (5)

    U. Eckern, G. Schön andV. Ambegaokar:Phys. Rev.,30, 6419 (1984).

    Article  ADS  Google Scholar 

  6. (6)

    D. J. Amit:Field Theory, the Renormalization Group and Critical Phenomena (World Scientific Publ. Co., 1984).

  7. (7)

    M. Cyrot:Rep. Prog. Phys.,36, 103 (1973).

    Article  ADS  Google Scholar 

  8. (8)

    C. Itzykson andJ. B. Zuber:Quantum Field Theory (McGraw-Hill Int. Book Company, New York, N. Y., 1980), p. 612.

    Google Scholar 

  9. (9)

    S. Deser, R. Jackiw andS. Templeton:Ann. Phys. (N.Y.),140, 372 (1982).

    MathSciNet  Article  ADS  Google Scholar 

  10. (10)

    R. Jackiw:Topological investigations of quantized gauge theories, inLes Houches, Session XL (1983), edited byB. S. De Witt andR. Stora (Elsevier Science Publ. B. V., 1984).

  11. (11)

    Seee.g. A. Barone andG. Paterno:Physics and Applications of the Josephson effect (Wiley, New York, N. Y., 1982).

    Google Scholar 

  12. (12)

    Y. Nambu:Phys. Rev.,117, 648 (1960).

    MathSciNet  Article  ADS  Google Scholar 

  13. (13)

    J. L. Bardeen, N. Cooper andJ. R. Schrieffer:Phys. Rev.,108, 1175 (1957).

    MATH  MathSciNet  Article  ADS  Google Scholar 

  14. (14)

    P. Higgs:Phys. Rev.,145, 1156 (1966).

    MathSciNet  Article  ADS  Google Scholar 

  15. (15)

    L. Onsager:Nuovo Cimento, Suppl.,6, 249 (1949);R. P. Feynman: inProgress in Low Temperature Physics, edited byC. J. Gorter, Vol. 1 (North Holland, Amsterdam, 1955), p. 17.

    MathSciNet  Article  Google Scholar 

  16. (16)

    H. B. Nielsen andP. Olesen:Nucl. Phys. B,61, 45 (1973).

    Article  ADS  Google Scholar 

  17. (17)

    M. Abramowitz andI. A. Stegun:Handbook of Mathematical Functions (National Bureau of Standards, Washington, D.C., 1965), p. 374.

    Google Scholar 

  18. (18)

    R. Rajaraman:Phys. Lett. C,21, 5 (1975) (Phys. Rep.).

    Google Scholar 

  19. (19)

    P. G. De Gennes:Superconductivity of Metals and Alloys (Benjamin Inc. New York, N. Y., 1966).

    MATH  Google Scholar 

  20. (20)

    S. Coleman:The uses of instantons, inNew Phenomena in Subnuclear Physics, edited byA. Zichichi, (Plenum Press, New York, N. Y., 1977).

    Google Scholar 

  21. (21)

    B. D. Josephson:Phys. Lett.,1, 251 (1962).

    MATH  Article  ADS  Google Scholar 

  22. (22)

    F. Wilczek:Phys. Rev. Lett.,49, 957, (1982).

    MathSciNet  Article  ADS  Google Scholar 

  23. (23)

    A. Fetter andP. P. Hohenberg: inSuperconductivity, edited byR. D. Parks (Dekker, New York, N. Y., 1968), p. 888.

    Google Scholar 

Download references

Author information



Additional information

To speed up publication, the authors have agreed not to receive proofs which have been supervised by the Scientific Committee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tagliacozzo, A., Ventriglia, F. Ordinary superconductivity and path integrals. Il Nuovo Cimento D 11, 141–156 (1989). https://doi.org/10.1007/BF02450237

Download citation

PACS 74.20.Fg

  • BCS theory
  • applications

PACS 74.50

  • Tunneling phenomenon
  • Josephson effect
  • and proximity effects

PACS 03.65.Sq

  • Semi-classical theories and applications