Skip to main content
Log in

Generalized thermodynamic ensembles for fractal measures

  • Published:
Il Nuovo Cimento D

Summary

Fractal measures are characterized by means of suitable conservation laws which can be expressed either by introducing pointwise dimensions (local approach) or by evaluating global dynamical invariants like the dimension functionD(q). The two points of view are formally equivalent to statistical mechanics and thermodynamics, respectively. Nonlinear dissipative dynamical systems are mapped onto one-dimensional Hamiltonian spin models with the introduction of appropriate statistical ensembles, using symbolic dynamics. The various thermodynamic ensembles are shown to be related to different covering procedures for fractal measures. Nonanalytic behaviour of the dimension functionD(q) is interpreted in terms of phase transitions on the time lattice. This phenomenon, occurring for non-self-similar measures, is due to long-time correlations in the symbolic dynamics and is not restricted to nonhyperbolic systems.

Riassunto

Le misure frattali vengono caratterizzate per mezzo di leggi di conservazione che possono essere espresse introducendo dimensioni puntiformi (approccio locale) o valutando invarianti dinamici globali come la funzione dimensioneD(q). I due punti di vista sono formalmente equivalenti a meccanica statistica e termodinamica, rispettivamente. Attraverso la dinamica simbolica, è possibile rappresentare i sistemi dinamici dissipativi nonlineari per mezzo di modelli di spin Hamiltoniani in reticoli unidimensionali, con l'introduzione di insiemi statistici appropriati. Si mostra che i vari insiemi termodinamici sono legati all'adozione di diversi ricoprimenti delle misure frattali. Il comportamento non analitico della funzione dimensioneD(q) viene interpretato in termini di transizioni di fase sul reticolo temporale. Questo fenomeno, che appare nelle misure non «auto-similari», è dovuto a correlazioni a tempi lunghi nella dinamica simbolica e non è ristretto ai sistemi non iperbolici.

Резюме

Фрактальные меры характеризуются с помощью соответствующих законов сохранения, которые могут быть выражены путем введения точечных размерностей (локальный подход) или путем вычисления глобальных динамических инвариантов, подобных функции размерностиD(q). Эти две точки зрения являются формально эквивалентными соответственно статистической механике и термодинамике. Нелинейные диссипативные динамические системы отображаются в одномерные гамильтоновы спиновые модели с введением соответствующих статистических ансамблей, используя символическую динамику. Показывается, что различные термодинамические ансамбли связаны с различными процедурами для фрактальных мер. Неаналитическое поведение функции размерностиD(q) интерпретируется в терминах фазовых переходов на временной решетке. Это явление, возникающее для несамоподобных мер, обусловлено длинно-временными корреляциями в символической динамике и не ограничено негиперболическими системами.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Eckmann andD. Ruelle:Rev. Mod. Phys.,57, 617 (1985).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. J. P. Eckmann:Rev. Mod. Phys.,53, 643 (1981).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. M. J. Feigenbaum:J. Stat. Phys.,19, 25 (1978).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. D. Ruelle andF. Takens:Commun. Math. Phys.,20, 167 (1971).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. B. B. Mandelbrot:The Fractal Geometry of Nature (Freeman, San Francisco, Cal., 1982).

    MATH  Google Scholar 

  6. P. Billingsley:Ergodic Theory and Information (J. Wiley & Sons, New York, N. Y., 1965).

    MATH  Google Scholar 

  7. P. Walter:Ergodic Theory, Introductory Lectures, inLecture Notes in Mathematics, Vol.458 (Springer, Berlin, 1975).

    Google Scholar 

  8. V. I. Oseledec:Moscow Math. Soc.,19, 197 (1968).

    MATH  MathSciNet  Google Scholar 

  9. Ya. B. Pesin:Russ. Math. Surv.,32, 55 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Grassberger, R. Badii andA. Politi:J. Stat. Phys.,51, 135 (1988).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. R. Badii:Conservation Laws and Thermodynamic Formalism for Dissipative Dynamical Systems, to appear inRiv. Nuovo Cimento.

  12. Ya. G. Sinai:Russ. Math. Surv.,27, 21 (1972);R. Bowen:Lecture Notes in Mathematics, Vol.470 (Springer, Berlin, 1975);D. Ruelle:Thermodynamic Formalism, Encyclopedia of Mathematics and its Applications, Vol.5 (Addison-Wesley, Reading, Mass., 1978).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. O. E. Lanford: inStatistical Mechanics (CIME Lectures, 1976).

  14. P. Cvitanovič: inProceedings of the Workshop in Condensed Matter, Atomic and Molecular Physics, Trieste, Italy, 1986.

  15. D. Katzen andI. Procaccia:Phys. Rev. Lett.,58, 1169 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  16. R. Badii andA. Politi: inDimensions and Entropies in Chaotic Systems, edited byG. Mayer-Kress (Springer, Berlin, 1986).

    Google Scholar 

  17. R. Badii andA. Politi:Phys. Scr.,35, 243 (1987).

    MATH  MathSciNet  ADS  Google Scholar 

  18. J. D. Farmer, E. Ott andJ. A. Yorke:Physica D,7, 153 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  19. V. M. Alekseev andM. V. Yakobson:Phys. Rep.,75, 290 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  20. P. Grassberger andH. Kantz:Phys. Lett. A,113, 235 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  21. A. Cohen andI. Procaccia:Phys. Rev. A,31, 1872 (1985).

    Article  ADS  Google Scholar 

  22. T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia andB. Shraiman:Phys. Rev. A,33, 1141 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  23. A. Renyi:Probability Theory (North-Holland, Amsterdam, 1970).

    Google Scholar 

  24. P. Grassberger:Phys. Lett. A,97, 227 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  25. H. G. Hentschel andI. Procaccia:Physica D,8, 435 (1983).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. R. Badii andA. Politi:Phys. Rev. Lett.,52, 1661 (1984);J. Stat. Phys.,40, 725 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  27. G. Broggi:J. Opt. Soc. Am. B,5, 1020 (1988).

    Article  ADS  Google Scholar 

  28. R. Badii andA. Politi:Strange Attractors: Estimating the Complexity of Chaotic Signals, Nato-ASI onInstabilities and Chaos in Quantum Optics (Reidel, Dordrecht, 1988), to appear.

    Google Scholar 

  29. R. Badii andG. Broggi:Measurement of the dimension spectrum f(α): fixed-mass approach, to appear inPhys. Lett. A (1988).

  30. A. Münster:Statistical Thermodynamics (Springer, Berlin, 1969).

    MATH  Google Scholar 

  31. G. Parisi, appendix inU. Frisch:Fully Developed Turbulence and Intermittency, inProceedings of the International School on Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, edited byM. Ghil (North-Holland, Amsterdam, 1984);U. Frisch:Phys. Scr. T,9, 137 (1985).

    Google Scholar 

  32. P. Collet, J. Lebowitz andA. Porzio:J. Stat. Phys.,47, 609 (1987);T. Bohr andD. Rand:Physica D,25, 387 (1987);D. Rand:The Singularity Spectrum for Hyperbolic Cantor Sets and Attractors (University of Arizona, 1986), preprint.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. A. S. Wightman: Introduction toConvexity in the Theory of Lattices Gases, edited byR. B. Israel (Princeton University Press, Princeton, N. J., 1979).

    Google Scholar 

  34. M. J. Feigenbaum:J. Stat. Phys.,46, 919 and 925 (1987).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. M. H. Jensen, L. P. Kadanoff andI. Procaccia:Phys. Rev. A,36, 1409 (1987).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. R. Badii, K. Heinzelmann, P. F. Meier andA. Politi:Phys. Rev. A,37, 1323 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  37. T. Tél:Phys. Lett. A,119, 65 (1986).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. P. Szépfalusy andT. Tél:Phys. Rev. A,34, 2520 (1986).

    Article  ADS  Google Scholar 

  39. M. J. Feigenbaum, M. H. Jensen andI. Procaccia:Phys. Rev. Lett.,57, 1503 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  40. M. J. Feigenbaum:Los Alamos Sci.,1, 4 (1980).

    MathSciNet  Google Scholar 

  41. E. H. Lieb andD. C. Mattis:Mathematical Physics in One Dimension (Academic Press, New York, N. Y., 1966).

    Google Scholar 

  42. M. Hénon:Commun. Math. Phys.,50, 69 (1976).

    Article  MATH  ADS  Google Scholar 

  43. J. Guckenheimer andP. Holmes:Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (Springer, New York, N. Y., 1986).

    Google Scholar 

  44. J. L. Kaplan andJ. A. Yorke:Lecture Notes in Mathematics,13, 730 (1979).

    Google Scholar 

  45. R. Badii, G. Broggi, B. Derighetti, M. Ravani, S. Ciliberto, A. Politi andM. A. Rubio:Phys. Rev. Lett.,60, 979 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badii, R. Generalized thermodynamic ensembles for fractal measures. Il Nuovo Cimento D 10, 819–840 (1988). https://doi.org/10.1007/BF02450142

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02450142

PACS 05.45.b

Navigation