Il Nuovo Cimento D

, Volume 10, Issue 7, pp 805–818 | Cite as

Hermite Gaussian functions modulated by plane waves: a general basis set for bound and continuum states

  • R. Colle
  • A. Fortunelli
  • S. Simonucci
Article

Summary

Characteristics and advantages of a basis set of Hermite Gaussian functions modulated by plane waves (THGF) are discussed and analysed in a specific case. The expressions of the prototype integrals necessary in variational calculations for bound and continuum states are given.

PACS 31.15

General mathematical and computational developments 

PACS 31.20

Specific calculations and results 

PACS 71.10

General theories and computational techniques 

Riassunto

Si discutono caratteristiche e vantaggi di funzioni gaussiane moltiplicate da polinomi di Hermite di ogni grado e modulate da onde piane, quali funzioni di base per l'espansione di orbitali atomici e molecolari. I vantaggi di tali funzioni di base sono illustrati in un caso specifico. Si danno le espressioni degli integrali prototipo coinvolgenti tali funzioni e necessari nei calcoli variazionali per stati legati e del continuo.

Резюме

Обсуждаются и анализируются в специальном случае характеристики и преимущества базисной системы функций Гаусса, умноженных на полиномы Эрмита и модулированных плоскими волнами. Приводятся выражения для прототипов интегралов, которые необсходимы при вариационных вычислениях для связанных и непрерывных состояний.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    R. Colle, A. Fortunelli andS. Simonucci:Nuovo Cimento D,9, 969 (1987).MathSciNetGoogle Scholar
  2. (2).
    T. Zivkovic andZ. B. Maksic:J. Chem. Phys.,49, 3083 (1968).MathSciNetCrossRefGoogle Scholar
  3. (3a).
    A. Golebiewski andJ. Mrozek:Int. J. Quantum. Chem.,7, 263 (1973)Google Scholar
  4. (3b).
    ibidem,,7, 1021 (1973).CrossRefGoogle Scholar
  5. (4).
    I. Cacelli, R. Moccia andV. Carravetta:Chem. Phys.,90, 313 (1984).CrossRefGoogle Scholar
  6. (5).
    M. Cecchi Morandi andO. Salvetti:Theor. Chim. Acta,26, 351 (1972).CrossRefGoogle Scholar
  7. (6).
    D. J. Allison, N. C. Handy andS. F. Boys:Mol. Phys.,26, 715 (1973).CrossRefGoogle Scholar
  8. (7).
    R. Montagnani, P. Riani andO. Salvetti:Theor. Chim. Acta,32, 161 (1973).CrossRefGoogle Scholar
  9. (8).
    Handbook of Mathematical Functions, edited byM. Abramowitz andI. A. Stegun,Nat. Bur. Standards Appl. Math. Ser.,55, 538 and 295 (1964).Google Scholar
  10. (9).
    W. Gautschi:SIAM J. Numer. Anal.,7, 187 (1970).MATHMathSciNetCrossRefGoogle Scholar
  11. (10).
    R. K. Nesbet:Electron-Atom Scattering Theory (Plenum Press, New York, N. Y., 1980).Google Scholar
  12. (11).
    D. K. Watson andV. McKoy:Phys. Rev. A,20, 1474 (1979).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica 1988

Authors and Affiliations

  • R. Colle
    • 1
    • 2
  • A. Fortunelli
    • 1
    • 2
  • S. Simonucci
    • 1
    • 2
  1. 1.Scuola Normale SuperiorePisaItalia
  2. 2.Istituto di Chimica Quantistica ed Energetica Molecolare del CNRPisaItalia

Personalised recommendations