International Journal of Anthropology

, Volume 7, Issue 4, pp 33–50 | Cite as

Tracking: Concepts, methods and tools

  • C. J. Kowalski
  • E. D. Schneiderman


Tracking can be defined as the tendency of an individual, or a collection of individuals, to maintain a particular course of growth over time relative to other individuals. A measure of tracking based on Cohen's kappa statistic and the tracking indices proposed by Foulkes-Davis and McMahan are considered. Applications, including significance testing, are made to a study of the growth of Guatemalan school children whose stature was measured longitudinally malan school children whose stature was measured longitudinally from 7 to 12 years of age. User-friendly programs for computing these indices are described and made available to interested readers.

Key words

Longitudinal studies growth stability PC programs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Berensen G.S., Foster T.A., Frank G.C., Frerichs R.R., Srinivasan S.R., Voors A.W. and Webber L.S., 1978. Cardiovascular disease risk factor variables at the preschool age: The Bogalusa Heart Study. Circulation, 57: 603–612.Google Scholar
  2. Bock R.D. and Petersen A.C., 1975. A multivariate correction for attenuation. Biometrika, 62: 673–678.CrossRefGoogle Scholar
  3. Bogin B., Sullivan T., Hauspie R. and MacVean R.B., 1989. Longitudinal growth in height, weight and bone age of Guatemalan Ladino and Indian Schoolchildren. Amer J Hum Biol, 1: 103–113.CrossRefGoogle Scholar
  4. Carter R.L. and Yang M.C.K., 1986. Large-sample inference in random coefficient regression models. Communications in Statistics — Theory and Methods, 8: 2507–2526.Google Scholar
  5. Clarke W.R., Schrot H.F., Leaverton P.E., Connor W.E. and Lauer R.M., 1978. Tracking of blood lipids and blood pressures in school age children: The Muscatine Study. Circulation, 58: 626–634.Google Scholar
  6. Cohen J (1960) A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20: 37–46.Google Scholar
  7. Fearn T., 1975. A Bayesian approach to growth curves. Biometrika, 62: 89–100.CrossRefGoogle Scholar
  8. Fearn T., 1977. A two-stage model for growth curves which leads to Rao's covariance adjusted estimators. Biometrika, 64: 141–143.CrossRefGoogle Scholar
  9. Fleiss J.L., 1981. Statistical Methods for Rates and Proportions, Second Edition, NY: Wiley.Google Scholar
  10. Fleiss J.L., Nee J.C.M. and Landis J.R., 1979. The large sample variance of kappa in the case of different sets of raters. Psychol Bull, 86: 974–977.CrossRefGoogle Scholar
  11. Foulkes M.A. and Davis C.E., 1981. An index of tracking for longitudinal data. Biometrics 37: 439–446.CrossRefGoogle Scholar
  12. Kowalski C.J., 1972. A commentary on the use of multivariate statistical methodology in anthropometric research. Amer J Phys Anthro, 36: 119–131.CrossRefGoogle Scholar
  13. Landis J.R. and Koch G.G., 1977. The measurement of observer agreement for categorical data. Biometrics, 33: 159–174.CrossRefGoogle Scholar
  14. Levine R.S., Hennekens C.H., Klein B., Gourley J., Briese F.W., Hokanson J., Gelband H. and Jesse J.M., 1978. Tracking correlations of blood pressure levels in infancy. Pediatrics, 61: 121–125.Google Scholar
  15. McMahan C.A., 1981. An index of tracking. Biometrics, 37: 447–455.CrossRefGoogle Scholar
  16. Rao C.R., 1965. The thoery of least squares when the parameters are stochastic and its application to the analysis of growth curves. Biometrika, 52: 447–458.CrossRefGoogle Scholar
  17. Rosner B., Hennekins C.H., Kass E.H. and Miall W.E., 1977. Age-specific correlation analysis of longitudinal blood pressure data. Amer J Epid, 106: 306–313.Google Scholar
  18. Schneiderman E.D. and Kowalski C.J., 1985. Implementation of Rao's one-sample polynomial growth curve model using SAS. Amer J Phys Anthrop, 67: 323–333.CrossRefGoogle Scholar
  19. Schneiderman E.D. and Kowalski C.J., 1989. Implementation of Hill's growth curve analysis for unequal-time intervals using GAUSS. Amer J Hum Biol, 1: 31–42.CrossRefGoogle Scholar
  20. Schneiderman E.D., Kowalski C.J. and Ten Have T.R., 1992. A GAUSS program for computing an index of tracking from longitudinal observations. Amer J Hum Biol, 2: 475–490.CrossRefGoogle Scholar
  21. Schneiderman E.D., Willis S.M., Kowalski C.J. and Ten Have T.R., 1990a. A GAUSS program for comparing tracking indices in several independent groups. Amer J Hum Biol, 4: 399–401.CrossRefGoogle Scholar
  22. Schneiderman E.D., Willis S.M., Kowalski C.J. and Ten Have T.R., 1992b. Computation of Foulkes and Davis' nonparametric tracking index using GAUSS. AmerJ Hum Biol, 4: 417–420.CrossRefGoogle Scholar
  23. Schneiderman E.D., Willis S.M. Kowalski C.J. and Ten Have T.R., 1990c. A GAUSS program for computing the Foulkes-Davis tracking index for polynomial growth curves. Amer J Hum Biol, submitted for publication.Google Scholar
  24. Sen P.K., 1960. On some convergence properties of U-statistics. Calcutta Stat Assn Bull, 10: 1–18.Google Scholar
  25. Ten Have T.R., Kowalski C.J. and Schneiderman E.D., 1990a. A GAUSS program for analyzing one-sample longitudinal data sets which satisfy the two-stage polynomial growth curve model. Amer J Hum Biol, 3, 269–279.CrossRefGoogle Scholar
  26. Ten Have T.R., Kowalski C.J. and Schneiderman E.D. 1992b. A GAUSS program for obtaining orthogonal polynomial regression coefficients for use in longitudinal data analysis. Amer J Hum Biol, 4: 403–416.CrossRefGoogle Scholar
  27. Voors A.W., Webber L.S. and Berenson G.S., 1979. Time course studies of blood pressure in children — The Bogalusa Heart Study. Amer J Epid, 109: 320–334.Google Scholar
  28. Ware J.H. and Wu M.C., 1981. Tracking: Prediction of future values from serial measurements. Biometrics 37: 427–438.CrossRefGoogle Scholar

Copyright information

© International Institute for the Study of Man 1992

Authors and Affiliations

  • C. J. Kowalski
    • 1
  • E. D. Schneiderman
    • 2
  1. 1.Department of Biologic and Materials Sciences School of DentistryThe University of MichiganAnn ArborUSA (CJK)
  2. 2.Department of Oral and Maxillofacial SurgeryBaylor College of DentistryDallasUSA (EDS)

Personalised recommendations