Advertisement

Microsystem Technologies

, Volume 2, Issue 2, pp 56–62 | Cite as

Synchrotron radiation analysis of microstructures

  • N. Mölders
  • H. O. Moser
  • W. Menz
  • P. J. Schilling
  • V. Saile
Technical Papers
  • 17 Downloads

Abstract

the outstanding spectral and spatial characteristics of synchrotron radiation make it a powerful analytical tool in microstructure technology. We apply absorption spectroscopy to study foils of electroplated Permalloy (NiFe), and of nickel phosphorus, because they are of interest to microfabrication for their soft magnetic properties and their selective etching behaviour, respectively. In particular, we show that in the electroplated Permalloy foils Ni keeps the structure of pure Ni while Fe changes from b.c.c. to f.c.c. NiP foils become increasingly amorphous with growing P content. In this way, radial elemental distributions which determine magnetic or other properties can be monitored sensitively to improve electroplating process control, even in situ. We also measure the radial thickness profile of a gold layer sputtered on top of a chromium coated silicon wafer. This technique might be extended to measure a given layer in a multilayer structure selectively and non-destructively even when hidden or opaque.

Keywords

Radial Distribution Function Gold Layer Soft Magnetic Property Nickel Iron Alloy Double Crystal Monochromator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Galhotra V; He J-H; Natarajan A; McCarley RL; Ma E (1995) Electrodeposited nickel and nickel alloys for applications in LIGA microsystems. In: Science and Technology at CAMD, pp. 201–204. Proc. of the 1995 Workshop, Louisiana State University, Baton RougeGoogle Scholar
  2. Gobet J;Cardot F;Bergqist J;Rudolf F (1993) Electrodeposition of 3D microstructures on silicon. J. Micromech. Microeng. 3: 123–130CrossRefGoogle Scholar
  3. Golovchenko JA;Levesque RA;Cowan PL (1981) Rev. Sci. Instrum. 52: 51CrossRefGoogle Scholar
  4. Gurman SJ (1990) EXAFS and structural studies of glasses In: Applications of Synchrotron Radiation, Catlow, CRA; Greaves GN (eds) pp. 140–170, Glasgow and London: BlackieGoogle Scholar
  5. Lengeler B (1987), Applications of synchrotron radiation in materials analysis. Mikrochim. Acta (Wien) I, pp. 455–475CrossRefGoogle Scholar
  6. Sayers DE; Bunker BA (1988) Data Analysis In: X-ray absorption: Principles, applications, techniques of EXAFS, SEXAFS and XANES. Koningsberger DC; Prins R (eds) pp. 211–253, New YorkGoogle Scholar
  7. Schilling PJ;Morikawa E;Tolentino H;Tamura E;Kurtz RL;Cusatis C (1995) Installation and operation of the LNLS double-crystal monochromator at CAMD. Rev. Sci. Instrum. 66 (2): 2214–2216CrossRefGoogle Scholar
  8. Thommes A; Bade K; Stark W; Bacher W; Liebscher H (1994) Fabrication of LIGA microstructures made of permalloy: Electrodeposition and magnetic properties. Abstracts of the symposium “Microtechnology” ACHEMA 94Google Scholar
  9. Wong J (1986) Extended X-ray Absorption Fine Structure: A modern structural tool in material science. Mat. Sci. Eng. 80: 107–128CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • N. Mölders
    • 1
  • H. O. Moser
    • 1
  • W. Menz
    • 1
  • P. J. Schilling
    • 2
  • V. Saile
    • 2
  1. 1.Institut für Mikrostrukturtechnik und Projekt MikrosystemtechnikForschungszentrum Karlsruhe und Universität KarlsruheKarlsruheGermany
  2. 2.The J. Bennett Johnston, Sr., Center for Advanced Microstructures and DevicesLouisiana State UniversityBaton RougeUSA

Personalised recommendations