Skip to main content
Log in

The metamorphic switch in hemoglobin phenotype ofXenopus laevis involves erythroid cell replacement

  • Published:
Roux's archives of developmental biology Aims and scope Submit manuscript

Summary

To elucidate the cellular basis of hemoglobin transition inXenopus laevis the distribution of larval and adult hemoglobins was analyzed by indirect immunofluorescence in the circulating erythrocytes during metamorphosis. In addition, the morphological characteristics as well as the capacity for synthesis of DNA and hemoglobin in the erythrocytes were followed during the same developmental period. Our quantitative analysis on the distribution of larval and adult hemoglobins suggests that they are localized in different cells. Hemoglobin transition, therefore, most likely reflects replacement of the larval erythrocyte population by new cells which are committed to adult globin synthesis. Since hemoglobin transition is not accompanied by an increase in the abundance of immature erythroid cells with active DNA synthesis, we assume that the presumptive adult erythroid cells are released into circulation at a relatively advanced stage of maturation. The decline in the synthesis of DNA and larval hemoglobin further indicates that cessation of cell renewal in the larval erythrocyte population may represent a decisive step in hemoglobin transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banville D, Williams JG (1985a) Developmental changes in the pattern of larval β-globin gene expression inXenopus laevis. Identification of two early larval β-globin mRNA sequences. J Mol Biol 184:611–620

    Article  PubMed  CAS  Google Scholar 

  • Banville D, Williams JG (1985b) The pattern of expression of theXenopus laevis tadpole α-globin genes and the amino acid sequence of the three major tadpole α-globin polypeptides. Nucleic Acids Res 13:5407–5421

    PubMed  CAS  Google Scholar 

  • Benbassat J (1970) Erythroid cell development during natural amphibian metamorphosis. Dev Biol 21:557–583

    Article  PubMed  CAS  Google Scholar 

  • Benbassat J (1974) The transition from tadpole to frog haemoglobin during natural amphibian metamorphosis. I. Protein synthesis by peripheral blood cells in vitro. J Cell Sci 15:347–357

    PubMed  CAS  Google Scholar 

  • Broyles RH (1981) Changes in the blood during amphibian metamorphosis. In: Gilbert LI, Frieden E (eds) Metamorphosis —a problem in developmental biology, Plenum Press, New York, pp 461–490

    Google Scholar 

  • De Witt W (1968) Microcytic response to thyroxine administration. J Mol Biol 32:502–504

    Article  PubMed  Google Scholar 

  • Dorn AR, Broyles RH (1982) Erythrocyte differentiation during the metamorphic hemoglobin switch ofRana catesbeiana. Proc Natl Acad Sci USA 79:5592–5596

    Article  PubMed  CAS  Google Scholar 

  • Hawkes R, Niday E, Gordon J (1982) A dot-blot-immuno-binding assay for monoclonal and other antibodies. Anal Biochem 119:142–147

    Article  PubMed  CAS  Google Scholar 

  • Hentschel CC, Kay RM, Williams JG (1979) Analysis ofXenopus laevis globins during development of erythroid cell maturation and the construction of recombinant plasmids containing sequences derived from adult globin mRNA. Dev Biol 72:350–363

    Article  PubMed  CAS  Google Scholar 

  • Herner AE, Frieden E (1961) Biochemical changes during anuran metamorphosis. VIII. Changes in the nature of red cell proteins. Arch Biochem Biophys 95:25–35

    Article  PubMed  CAS  Google Scholar 

  • Hollyfield JG (1966) Erythrocyte replacement at metamorphosis in the frog,Rana pipiens. J Morphol 119:1–6

    Article  PubMed  CAS  Google Scholar 

  • Hosbach HA, Wyler T, Weber R (1983) TheXenopus laevis globin gene family: Chromosomal arrangement and structure. Cell 32:45–53

    Article  PubMed  CAS  Google Scholar 

  • Jeffreys AJ, Wilson V, Wood D, Simons JP, Kay RM, Williams JG (1980) Linkage of adult α-and β-globin genes inX, laevis and gene duplication by tetraploidization. Cell 21:555–564

    Article  PubMed  CAS  Google Scholar 

  • Jurd RD, Maclean N (1970) An immunofluorescent study of the haemoglobins in metamorphosingXenopus laevis. J Embryol Exp Morphol 23:299–309

    PubMed  CAS  Google Scholar 

  • Jurd RD, Maclean N (1974) Detection of haemoglobin in red cells ofXenopus laevis by immunofluorescent double labelling. J Microsc 100:213–217

    PubMed  CAS  Google Scholar 

  • Just JJ, Atkinson BG (1972) Hemoglobin transition in the bullfrog,Rana catesbeiana, during spontaneous and induced metamorphosis. J Exp Zool 182:271–280

    Article  PubMed  CAS  Google Scholar 

  • Just JJ, Schwager J, Weber R (1977) Hemoglobin transition in relation to metamorphosis in normal and isogenicXenopus laevis. Roux's Arch Dev Biol 183:307–323

    Article  CAS  Google Scholar 

  • Just JJ, Schwager J, Weber R, Fey H, Pfister H (1980) Immunological analysis of hemoglobin transition, during metamorphosis of normal and isogenicXenopus. Roux's Arch Dev Biol 188:75–80

    Article  CAS  Google Scholar 

  • Langone JJ (1982) Protein A ofStaphylococcus aureus and related immunoglobulin receptors produced by streptococci and pneumonococci. Adv Immunol 32:241–252

    Google Scholar 

  • Maniatis GM, Ingram VM (1971) Erythropoiesis during amphibian metamorphosis. III. Immunochemical detection of tadpole and frog hemoglobins (Rana catesbeiana) in single erythrocytes. J Cell Biol 49:390–404

    Article  CAS  Google Scholar 

  • Moss B, Ingram VM (1965) The repression and induction by thyroxin of hemoglobin synthesis during amphibian metamorphosis. Proc Natl Acad Sci USA 54:967–974

    Article  PubMed  CAS  Google Scholar 

  • Moss B, Ingram VM (1968) Hemoglobin synthesis during amphibian metamorphosis. II. Synthesis of adult hemoglobin following thyroxine administration. J Mol Biol 32:493–450

    Article  PubMed  CAS  Google Scholar 

  • Nieuwkoop PD, Faber J (1967) Normal Table ofXenopus laevis (Daudin). 2nd edition. North-Holland, Amsterdam

    Google Scholar 

  • Rosenberg M (1970) Electrophoretic analysis of hemoglobin and isozymes in individual vertebrate cells. Proc Natl Acad Sci USA 67:32–36

    Article  PubMed  CAS  Google Scholar 

  • Sandmeier E, Gygi D, Wyler T, Nyffenegger U, Weber R (1986) Analysis of globin transition inXenopus laevis and identification of globins by in vitro translation of hybrid-selected mRNA. FEBS Lett 205:219–222

    Article  CAS  Google Scholar 

  • Sandmeier E, Gygi D, Wyler T, Nyffenegger U, Weber R (1988) Developmental pattern and molecular identification of globin chains inXenopus laevis. Roux's Arch Dev Biol 197:406–412

    Article  CAS  Google Scholar 

  • Undritz E (1973) Sandoz atlas of hematology, 2nd edn. Sandoz, Basel

    Google Scholar 

  • Vankin GL, Brandt EM, de Witt (1970) Ultrastructural studies of red blood cells from thyroxin-treatedRana catesbeiana tadpoles. J Cell Biol 47:467–772

    Article  Google Scholar 

  • Widmer HJ, Andres A-C, Niessing J, Hosbach H, Weber R (1981) Comparative analysis of cloned larval and adult globin cDNA sequences ofXenopus laevis. Dev Biol 88:325–332

    Article  PubMed  CAS  Google Scholar 

  • Widmer HJ, Hosbach HA, Weber R (1983) Globin gene expression inXenopus laevis: anemia induces precocious globin transition and appearance of adult erythroblasts during metamorphosis. Dev Biol 99:50–60

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, R., Geiser, M., Müller, P. et al. The metamorphic switch in hemoglobin phenotype ofXenopus laevis involves erythroid cell replacement. Roux's Arch Dev Biol 198, 57–64 (1989). https://doi.org/10.1007/BF02447740

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02447740

Key words

Navigation