Biotechnology Techniques

, Volume 8, Issue 12, pp 889–894 | Cite as

Improved biomass production of cyanobacteria by reutilization of the culture medium

  • Humberto J. Silva
  • María Cristina Italiano
  • Susana G. Ferrari


The biomass production of a cyanobacterium (Nostoc sp.) in a photoreactor with a low illuminated surface area to volume ratio was improved by the reutilization of the culture medium. After six succesive utilizations the growth ofNostoc sp. amounted to 2.15 g/l with an average content in phycobiliproteins of 14.4% on dry weight basis. The procedure reported allowed an 80% increase in biomass. The cellular self-sedimentation proved to be effective for biomass separation between reutilization steps.


Biomass Nostoc Stationary Growth Phase Anabaena Variabilis Initial Biomass Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cornet, J.F., Dussap, C.G., and Dubertret, G. (1992). Biotechnol. Bioeng. 40, 817–825.CrossRefGoogle Scholar
  2. Fabregas, J., Abalde, J., Herrero, C., Cabezas, B., and Veiga, M. (1984). Aquaculture. 42, 207–215.CrossRefGoogle Scholar
  3. Famiglietti, M., Hochköppler, A., Wehrli, E., and Luisi, P.L. (1992). Biotechnol. Bioeng. 40, 173–178.CrossRefGoogle Scholar
  4. Fontes, A.G., Moreno J., Vargas, M.A., and Rivas, J. (1992). Biotechnol. Bioeng. 40, 681–685.CrossRefGoogle Scholar
  5. Fontes, A.G., Vargas, M.A., Moreno, J., Guerrero, M.G., and Losada, M. (1987). Biomass. 13, 33–43.CrossRefGoogle Scholar
  6. Goldman, J.C., and Graham, S. (1981). Appl. Environ. Microbiol. 41, 60–70.Google Scholar
  7. Golueke, C.G., and Oswald, W.J. (1965). J. Wat. Poll. Contr. Fed. 33, 4, 471–498.Google Scholar
  8. Hüghes, E.O., Gorham, P.R., and Zehnder, A. (1958). Can. J. Microbiol. 4, 225–226.CrossRefGoogle Scholar
  9. Kratz, W.A., and Myers, J. (1955). Am. J. Bot. 42, 282–287.CrossRefGoogle Scholar
  10. McKinney, G. (1941) J. Biol. Chem. 140, 315–322.Google Scholar
  11. Miyamoto, H., Wable, O., and Benemann, J. R. (1988). Biotechnology Lett. 10, 703–708.CrossRefGoogle Scholar
  12. O'Carra, P. (1965) Biochem. J. 94, 171–174.Google Scholar
  13. Oswald, W. J. (1977). Method of waste treatment and algae recovery. U.S. Patent N□ 4005546.Google Scholar
  14. Pirt, S.J. (1975) Parameters of growth and analysis of growth data. In: Principles of microbe and cell cultivation, pp 4–14. Oxford: Blackwell Scientific.Google Scholar
  15. Richmond, A., Voshak, A., and Arad, S. (1980) Environmental limitations in outdoor production of algal biomass. In: Algae biomass production and use, eds Shelef, G., and Soeder S.J., pp 65–72. North-Holland: Elsevier Biochemical Press.Google Scholar
  16. Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M. and Stainer, R.Y. (1979). J. Gen. Microbiol. 111, 1–61.Google Scholar
  17. Silva, H.J., Cortiñas, T.I., and Ertola, R. (1989). Appl. Microbiol. Biotechnol. 31, 293–297.CrossRefGoogle Scholar
  18. Trotta, P. (1980) A simple and inexpensive system for continuous monoxenic culture ofBrachionus plicatilis Müller as a basis for mass production In: Algae Biomass: Production and use, eds Shelef, G., and Soeder, C.J., pp 307–313. North-Holland: Elsevier Biochemical Press.Google Scholar
  19. Ukeles, R. (1973) Continuous culture — A method for the production of unicellular algal foods. In: Handbook of phycological methods, culture methods and growth measurements, J. Stein, eds., pp 233–256. Cambridge: Univ. Press.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Humberto J. Silva
    • 1
  • María Cristina Italiano
    • 1
  • Susana G. Ferrari
    • 1
  1. 1.Laboratorio de Alimentos y Area de Microbiología. Facultad de Química Bioquímica y FarmaciaUniversidad Nacional de San LuisSan LuisArgentina

Personalised recommendations