Skip to main content
Log in

Optical oxygen sensor based on phosphorescence lifetime quenching and employing a polymer immobilised metalloporphyrin probe

Part 1 theory and instrumentation

  • Transducers and Electrodes
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A review of the theory of phosphorescence quenching is given, and its particular application to the sensing of oxygen is outlined. The advantages of measuring phosphorescence lifetime as opposed to phosphorescence intensity are reviewed. The advantages of using the metalloporphyrins as such sensors are identified and in particular the characteristics of palladium coproporphyrin are discussed. The exceptionally long room temperature lifetime of this material makes it possible to use relatively simple PC-based instrumentation to measure lifetimes, with a xenon flashlamp light source. The design of such a system is given and its performance in measuring phosphorescence lifetime in aqueous solutions is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ballew, R. M. andDemas, J. N. (1989) An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays.Anal. Chem.,61, 30–33.

    Google Scholar 

  • Beddard, G. (1982) Application of flash photolysis. InLight, chemical change and life: a source book in photochemistry,Coyle,J. D.,Hill,R. R. andRoberts,D. R. (Eds.), Open University Press, Milton Keynes, 207.

    Google Scholar 

  • Birch, D. J. S. andImhof, R. E. (1983) Spectroscopy with fluorescence lifetimes.european spectroscopy News.,48, 31–34.

    Google Scholar 

  • Bonner, R. B., DeArmond, M. K. andWahl, G. H. Jr. (1972) phosphorescence of bridged biphenyls in fluid solution.J. Am. Chem. Soc.,94, 988–989.

    Article  Google Scholar 

  • Bonnett, R. (1989) A death ray for cancer?New Scientist,28, 55–58.

    Google Scholar 

  • Callis, J. B., Gouterman, M., Jones, Y. M. andHenderson, B. H. (1971) Porphyrins XXII: fast fluorescence, delayed fluorescence, and quasiline structure in palladium and platinum complexes.J. Mol. Spectrosc.,39, 410–420.

    Article  Google Scholar 

  • Charlton, J. L. andHenry, B. R. (1974) A simple method for the determination of phosphorescence decay rates.J. Chem. Educ.,51, 753–754.

    Google Scholar 

  • Coyle, J. (1982) Block 5: Chemical properties of excited states. InPhotochemistry: light, chemical change and life. Open University Press, Milton Keynes.

    Google Scholar 

  • Demas, J. N. (1976) Luminescence decay times and bimolecular quenching: an ultrafast kinetics experiment.J. Chem. Educ.,53, 654–656.

    Google Scholar 

  • Dorough, G. D., Miller, J. R. andHuennekens, F. M. (1951) Spectra of the metallo-derivatives of α,β,ψ,δ-tetra phenylporphine.J. Am. Chem. Soc.,73, 4315–4320.

    Article  Google Scholar 

  • Dorsch, S. E. andDorsch, J. A. (1983) Use of oxygen analyzers should be mandatory.Anaesthesiology,59, 161–162.

    Google Scholar 

  • Dyke, T. R. andMuenter, J. S. (1975) An undergraduate experiment for the measurement of phosphorescence lifetimes.J. Chem. Educ.,52, 251–258.

    Google Scholar 

  • Eastwood, D. andGouterman, M. (1970) XVIII. Luminescence of (Co), (Ni), Pd, Pt complexes.J. Mol. Spectrosc.,35, 359–375.

    Article  Google Scholar 

  • EG & G (1988) Short-arc xenon flashlamps and power supplies (Data Sheet F1022B-1) EG & G Electro-Optics Ltd., Salem.

    Google Scholar 

  • Fischkoff, S. andVanderkooi, J. M. (1975) Oxygen diffusion in biological and artificial membranes determined by fluorochrome pyrene.J. Gen. Physiol.,65, 663–676.

    Article  Google Scholar 

  • Fleming, G. (1982) Luminescence instrumentation. InLight, chemical change and life: a source book in photochemistry.Coyle, J. D., Hill, R. R. andRoberts, D. R. (Eds.), Open University Press, Milton Keynes, 84.

    Google Scholar 

  • Förster, T. (1959) Tenth Spiers memorial lecture.Faraday Soc.: Discussion Chem. Soc.,27, 7–17.

    Article  Google Scholar 

  • Fraser, R. B. andTurney, S. Z. (1985) New method of respiratory gas analysis: light spectrometer.J. Appl. Physiol.,59, 1001–1007.

    Google Scholar 

  • Fugate, R. D. (1985) Fluorescence duration gives new dimension to chemical assays.Res. & Dev., April, 120–124.

    Google Scholar 

  • Gehrich, J. L., Lübbers, D. W., Opitz, N., Hansmann, D. R., Miller, W. W., Tusa, J. K. andYafuso, M. (1986) Optical fluorescence and its application to an intravascular blood gas monitoring system.IEEE Trans.,BME-33, 117–132.

    Google Scholar 

  • Gewehr, P. M. andDelpy, D. T. (1989) Development of a system to monitor oxygen concentration by phosphorescence quenching: preliminary results.Rev. Bras. Eng.,6, 394–400.

    Google Scholar 

  • Gewehr, P. andDelpy, D. T. (1993) Optical oxygen sensor based on phosphorescence lifetime quenching and employing polymer immobilised metalloporphyrin probe. Part 2 Sensor membranes and results.Med. & Biol. Eng. & Comput.,31, 11–21.

    Google Scholar 

  • Gijzeman, O. L. J., Kaufman, F. andPorter, G. (1973) Oxygen quenching of aromatic triplet states in solution (part 1).J. Chem. Soc. Faraday Trans.,2, 708–720.

    Google Scholar 

  • Gouterman, M., Schumaker, C. D., Srivastava, T. S. andYonetani, T. (1976) Absorption and luminescence of yttrium and lanthanide octathylporphin complexes.Chem. Phys. Lett.,40, 456–461.

    Article  Google Scholar 

  • Gradyushko, A. T. andTsvirko, M. P. (1971) Probabilities of intercombination transitions in porphyrin and metalloporphyrin molecules.Optics & Spectroscopy,31, 291–295.

    Google Scholar 

  • Gugger, H. andCalzaferri, G. (1980a) Picosecond time resolution by a continuous wave laser amplitude modulation technique. I: a critical investigation.J. Photochem.,13, 21–33.

    Article  Google Scholar 

  • Gugger, H. andCalzaferri, G. (1980b) Picosecond time resolution by a continuous wave laser amplitude modulation technique. II: experimental basis. ——Ibid.,,13, 295–307.

    Article  Google Scholar 

  • Hahn, C. E. W. (1987) Blood gas measurement.Clin. Phys. Physiol. Meas.,8, 3–38.

    Article  Google Scholar 

  • Harriman, A. (1980) Luminescence of porphyrins and metalloporphyrins. Part 1.—Zinc(II), nickel(II) and manganese(II) porphyrins.J. Chem. Soc. Faraday Trans. I,76, 1978–1985.

    Article  Google Scholar 

  • Harriman, A. (1981) Luminescence of porphyrins and metalloporphyrins. Part 2.—Copper(II), chromium(III), manganese (III), iron(II) and iron(III) porphyrins. ——Ibid.,,77, 369–377.

    Article  Google Scholar 

  • Hitchman, M. L. (1978)Measurement of dissolved oxygen. John Wiley & Sons.

  • Kalyanasundaram, K. andNeumann-Spallart, M. (1982) Photophysical and redox properties of water-soluble porphyrins in aqueous media.J. Phys. Chem.,86, 5163–5169.

    Article  Google Scholar 

  • Kautsky, H. (1939) Quenching of luminescence by oxygen.Trans. Faraday Soc.,35, 216–219.

    Article  Google Scholar 

  • Ladner, S. J. andBecker, R. S. (1965) Effect of environment on the unimolecular decay of the triplet state.J. Chem. Phys.,43, 3344–3354.

    Article  Google Scholar 

  • Lakowicz, J. R. (1985) Frequency-dependent spectroscopy measures time-dependent phenomena.Laser Focus/Electro-Optics,21(5), 156–161.

    Google Scholar 

  • Lewis, G. N. andKasha, M. (1944) Phosphorescence and the triplet state.J. Am. Chem. Soc.,66, 2100–2116.

    Article  Google Scholar 

  • Lott, P. F. andHurtubise, R. J. (1974a) LXXVII. Instrumentation for fluorescence and phosphorescence.J. Chem. Educ.,51, A315-A320.

    Google Scholar 

  • Lott, P. F. andHurtubise, R. J. (1974b) LXXVII. Instrumentation for fluorescence and phosphorescence (concluded). ——Ibid.,,51, A358-A364.

    Google Scholar 

  • Marks, W. E. Jr. (1983) A plea for the routine use of oxygen analyzers.Anesthesiol.,59, 159.

    Google Scholar 

  • Martin, M. J., Wickramasinghe, Y. A. B. D., Newson, T. P. andCrowe, J. A. (1987) Fibre-optics and optical sensors in medicine.Med. & Biol. Eng. & Comput.,25, 597–604.

    Google Scholar 

  • Mazze, R. I. (1972) Therapeutic misadventures with oxygen delivery systems: the need for continuous in-line oxygen monitors.Anesth. Analg.,51, 787–792.

    Google Scholar 

  • McGown, L. B. andBright, F. V. (1984) Comparison of phase-resolved and steady-state fluorimetric multicomponent determinations using wavelength selection.Anal. Chem.,56, 2195–2199.

    Article  Google Scholar 

  • McGown, L. B. (1989) Fluorescence lifetime filtering. ——Ibid.,,61, 839A-847A.

    Google Scholar 

  • McHale, J. L. andSeybold, P. G. (1976) Luminescence experiments using adsorbed dyes.J. Chem. Educ.,53, 654–656.

    Article  Google Scholar 

  • Meech, S. R., Stubbs, C. D. andPhillips, D. (1984) The application of fluorescence decay measurements in studies of biological systems.IEEE Trans.,QE-20, 1343–1352.

    Google Scholar 

  • Morgan, P. (1983) Physical gas analysers. InMeasurement in clinical respiratory physiology.Laszlo, G. andSudlow, M. F. (Eds.), Academic Press, 113.

  • Parker, D. andDelpy, D. T. (1983) Blood gas analysis by invasive and non-invasive techniques. InMeasurement in clinical respiration physiology.Laszlo, G. andSudlow, M. F. (Eds), Academic Press, 75.

  • Pawlowski, M. andWilson, D. F. (1991) Monitoring of the oxygen pressure in the blood of live animals using the oxygen dependent quenching of phosphorescence. InAdv. Exp. Med. & Biol. 1992 (in press).

  • Peterson, J. I., Fitzgerald, R. V. andBuckhold, D. K. (1984) Fiber-optic probe forin vivo measurement of oxygen partial pressure.Anal. Chem.,56, 62–67.

    Article  Google Scholar 

  • Pfeifer, P. M., Pearson, D. T. andClayton, R. H. (1988) Clinical trial of the continucath intra-arterial oxygen monitor.Anaesthesia,43, 677–682.

    Google Scholar 

  • Rest, A. (1982) Applications of energy transfer to macromolecules. InLight, chemical change and life: a source book in photochemistry.Coyle, J. D., Hill, R. R. andRoberts, D. R. (Eds.) Open University Press, Milton Keynes, 98.

    Google Scholar 

  • Roberts, D. (1982) Block 4: Physical properties of excited states. InPhotochemistry: light, chemical change and life. Open University Press, Milton Keynes.

    Google Scholar 

  • Schulman, E. M. andWalling, C. (1973) Triplet-state phosphorescence of adsorbed ionic organic molecules at room temperature.J. Phys. Chem.,77, 902–905.

    Article  Google Scholar 

  • Shapiro, B. A. (1989) pH and blood gas measurements: discerning innovation from sophistication.Crit. Care Med.,17, 966–967.

    Google Scholar 

  • Shapiro, B. A., Cane, R. D., Chomka, C. M., Bandala, L. E. andPeruzzi, W. T. (1989) Preliminary evaluation of an intraarterial blood gas system in dogs and humans. ——Ibid.,,17, 455–460.

    Article  Google Scholar 

  • Siggaard-Andersen, O., Gøthgen, I. H., Wimberley, P. D., Rasmussen, J. P. andFogh-Andersen, N. (1988) Evaluation of the Gas-STAT® fluorescence sensors for continuous measurement of pH, pCO2 and pO2 during cardiopulmonary bypass and hypothermia.Scand. J. Clin. Lab. Invest.,48, Suppl. 189, 77–84.

    Article  Google Scholar 

  • Slayter, E. M. (1970)Optical methods in biology. Wiley Interscience, 552.

  • Smoluchowski, M. (1917) Versuch einer mathematischen theorie der koagulationskinetic kolloider lösungen.Z. Phys. Chem.,92, 129–168.

    Google Scholar 

  • Stern, O. andVolmer, M. (1919) Über die Abklingungszeit der Fluoreszenz.Physik. Zeitschr.,20, 183–188.

    Google Scholar 

  • Stryer, L. (1968) Fluorescence spectroscopy of proteins.Science,162, 526–533.

    Google Scholar 

  • Subczynski, W. K. andHyde, J. S. (1984) Diffusion of oxygen in water and hydrocarbons using an electron spin resonance spin-label technique.Biophys. J.,45, 743–748.

    Article  Google Scholar 

  • Tsvirko, M. P., Sapunov, V. V. andSolovev, K. N. (1973) Triplet-triplet absorption and phosphorescence of metal-porphyrin complexes in liquid solutions.Opt. Spectrosc.,34, 635–638.

    Google Scholar 

  • Turley, T. J., Demas, J. N., andDemas, D. J. (1987) Microcomputerized ultrahigh-speed transient digitizer and luminescence lifetime instrument.Anal. Chim. Acta,197, 121–128.

    Article  Google Scholar 

  • Turney, S. Z., McAslan, T. C. andCowley, R. A. (1972) The continuous measurement of pulmonary gas exchange and mechanics.Ann. Thoracic Surg.,13, 229–242.

    Article  Google Scholar 

  • Vanderkooi, J. M. andWilson, D. F. (1986) A new method for measuring oxygen in concentration in biological systems. InProc. oxygen transport to tissue VIII.Longmuir, I. S. (Ed.), Plenum, New York, 189–193.

    Google Scholar 

  • Vanderkooi, J. M., Maniara, G., Green, T. J. andWilson, D. F. (1987) An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence.J. Biol. Chem.,262, 5476–5482.

    Google Scholar 

  • Ware, W. R. (1971) Transient luminescence measurements. InCreation and detection of the excited state, I(A).Lamola, A. A. (Ed.), Marcel Dekker, 288.

  • Westenskow, D. R., Jordan, W. S., Jordan, R. andGillmor, S. T. (1981) Evaluation of oxygen monitors for use during anesthesia.Anesth. Analg.,60, 53–56.

    Google Scholar 

  • Willard, H. H., Merritt, L. L. Jr., Dean, J. A. andSettle, F. A. Jr. (1988)Instrumental methods of analysis, 7th edn. Wadsworth, Belmont.

    Google Scholar 

  • Wilson, D. F., Vanderkooi, J. M., Green, T. J., Maniara, G., Defeo, S. P. andBloomgarden, D. C. (1987) A versatile and sensitive method for measuring oxygen. In Proc. Oxygen Transport to Tissue IX.Silver, I. A. andSilver, A. (Eds.), Plenum, New York, 71–77.

    Google Scholar 

  • Wilson, D. F., Rumsey, W. L., Green, T. J. andVanderkooi, J. M. (1988) The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration.J. Biol. Chem.,263, 2712–2718.

    Google Scholar 

  • Wilson, R. S. andLaver, M. B. (1972) Oxygen analysis: advances in methodology,Anesthesiol.,37, 112–126.

    Google Scholar 

  • Yamamoto, Y., Takei, Y., Mokushi, K., Morita, H., Mutoh, Y. andMiyashita, M. (1987) Breath-by-breath measurement of alveolar gas exchange with a slow-response gas analyser.Med. & Biol. Eng. & Comput.,25, 141–146.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gewehr, P.M., Delpy, D.T. Optical oxygen sensor based on phosphorescence lifetime quenching and employing a polymer immobilised metalloporphyrin probe. Med. Biol. Eng. Comput. 31, 2–10 (1993). https://doi.org/10.1007/BF02446879

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02446879

Keywords

Navigation