Skip to main content
Log in

Test of four defibrillation dosing strategies using a two-dimensional finite-element model

  • Clinical Engineering
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The most widely used defibrillation dosing strategy is that adopted by the American Heart Association in 1986. However, several alternative dosing strategies have been proposed to match delivered energy to the individual requirements of defibrillation subjects. In this study, two-dimensional finite element methods are used to investigate the performance of four of these dosing strategies applied to three thoracic models representative of men and women of different thoracic aspect ratios. From the resulting current density distributions, the relative effectiveness of the following dosing strategies are evaluated and compared: constant current; current proportional to body weight; constant energy; energy proportional to body weight. Our results show that the strategy of applying current proportional to subject body weight with a current dose of 0·58 A kg−1 was able to defibrillate all three subjects with only minimal overexposure of any one of them. None of the other dosing strategies examined could be made to successfully defibrillate all three subjects without significantly overexposing at least one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Heart Association (1986) Standards and guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiac care (ECC).JAMA,255, 2841–3044.

    Google Scholar 

  • Bo, W. J., Meshan, I. andKreuger, W. A. (1980)Basic atlas of cross-sectional anatomy. Saunders, Philadelphia.

    Google Scholar 

  • Byrd, B. F., Schiller, N. B., Botvinick, E. H. andHiggins, C. B. (1985) Normal cardiac dimensions by magnetic resonance imaging.Am. J. Cardiol.,55, 1440–1442.

    Article  Google Scholar 

  • Campbell, N. P. S., Webb, S. W., Adgey, A. A. J. andPantridge, J. F. (1977) Transthoracic ventricular defibrillation in adults.Br. Med. J.,2, 1379–1381.

    Google Scholar 

  • Chen, P.-S., Shibata, N., Dixon, E., Martin, R. O. andIdeker, R. E. (1986) Comparison of the defibrillation threshold and the upper limit of ventricular vulnerability.Circ.,73, 1022–1028.

    Google Scholar 

  • Crampton, R. (1980) Accepted, controversial, and speculative aspects of ventricular defibrillation.Progr. Cardiovasc. Dis.,23, 167–168.

    Article  Google Scholar 

  • Dahl, C. F., Ewy, G. A., Warner, E. D. andThomas, E. D. (1974) Myocardial necrosis from direct current discharge: effect of paddle electrode size and time interval between discharges.Circ.,50, 956–961.

    Google Scholar 

  • Doherty, P. W., McLaughlin, P. R., Billingham, M., Kernoff, R., Goris, M. L. andHarrison, D. C. (1979) Cardiac damage by direct current countershock applied to the heart.Am. J. Cardiol.,43, 225–232.

    Article  Google Scholar 

  • Ewy, G. A., Ewy, M. D. andSilverman, J. (1972) Determinants of human transthoracic resistance to direct current discharge.Circ.,46, Suppl. II, II-150.

    Google Scholar 

  • Ewy, G. A. (1978) Cardiac arrest and resuscitation defibrillators and defibrillation.Current Problems in Cardiology,11, 1–71.

    Article  Google Scholar 

  • Fujimoto, L. K., Jacobs, G., Przybysz, J., Collins, S., Meaney, J., Kiraly, R. J. andNose, Y. (1984) Human thoracic anatomy based on computed tomography for development of a totally implantable left ventricular assist system.Artif. Organs,8, 436–444.

    Article  Google Scholar 

  • Gasho, J. A., Crampton, R. S., Cherwek, M. L., Sipes, J. N., Hanter, F. P. andO'Brien, W. M. (1979) Determinants of ventricular defibrillation in adults.Circ.,60, 231–240.

    Google Scholar 

  • Geddes, L. A. andBaker, L. E. (1967) The specific resistance of biological material. A compendium of data for the biomedical engineer and physiologist.Med. & Biol. Eng.,5, 271–293.

    Google Scholar 

  • Geddes, L. A., Tacker, W. A., Rosborough, J. P., Moore, A. G. andCabler, P. S. (1974) Electrical dose for ventricular defibrillation of large and small animals using precordial electrodes.J. Clin. Invest.,53, 310–319.

    Google Scholar 

  • Jacobs, G. B., Tetsuzo, A., Ecker, R., Mearey, T., Kiraly, R. J. andNose, Y. (1978) Human thoracic anatomy relevant to implantable artificial hearts.Artif. Organs,2, 64–82.

    Article  Google Scholar 

  • Jones, J. L., Proskauer, C. C., Pauli, W. K., Lepeschkin, E. andJones, R. E. (1980) Ultrastructural injury to chick myocardial cells in vitro following “electric countershock”.Circ. Res.,46, 387–394.

    Google Scholar 

  • Jones, J. L., Jones, R. E. andBalasky, G. (1987) Microlesion formation in myocardial cells by high-intensity electric field stimulation.Am. J. Physiol.,253, H480-H486.

    Google Scholar 

  • Karch, S. B. andBillingham, M. E. (1984) Morphologic effects of defibrillation: a preliminary report.Crit. Care Med.,12, 920–921.

    Google Scholar 

  • Kerber, R. E. andSarnat, W. (1979) Factors influencing the success of defibrillation in man.Circ.,60, 226–230.

    Google Scholar 

  • Kerber, R. E., Grayzel, J., Hoyt, R., Marcus, M. andKennedy, J. (1981) Transthoracic resistance in human defibrillation. Influence of body weight, chest size, serial shocks, paddle size and paddle contact.,63, 676–681.

    Google Scholar 

  • Kerber, R. E., Kouba, C., Martins, J., Kelly, K., Low, R., Hoyt, R., Ferguson, D., Bailey, L., Bennett, P. andCharbonnier, F. (1984) Advance prediction of transthoracic impedance in human defibrillation and cardioversion: importance of impedance in determining the success of low-energy shocks.,70, 303–308.

    Google Scholar 

  • Kerber, R. E., McPherson, D., Charbonnier, F., Kiesco, R. andHite, P. (1985) Automated impedance-based energy adjustment for defibrillation: experimental studies.,71, 136–140.

    Google Scholar 

  • Kerber, R. E., Martins, J. B., Kienzle, M. G., Constantin, L., Olshansky, B., Hopson, R. andCharbonnier, F. (1988) Energy, current, and success in defibrillation and cardioversion: clinical studies using an automated impedance-based method of energy adjustment.,77, 1038–1046.

    Google Scholar 

  • Kinnen, E., Kubicek, W., Hill, P. andTurton, G. (1964) Thoracic cage impedance measurements. School of Aerospace Medicine, Brooks AFB, Texas, Tech. Doc. Rep. SAM-TDR 64-5.

  • Lee, M. M. C. andNg, C. G. (1965) Postmortem studies of skinfold caliper measurement and actual thickness of skin and subcutaneous tissue.Human Biol.,37, 91–103.

    Google Scholar 

  • Lerman, B. B., Halperin, H. R., Tsitlik, J. E., Brin, K., Clark, C. W. andDeale, O. C. (1987) Relationship between canine transthoracic impedance and defibrillation threshold: evidence for current-based defibrillation.J. Clin. Invest.,80, 676–682.

    Article  Google Scholar 

  • Lerman, B. B., DiMarco, J. P. andHaines, D. E. (1988) Current-based versus energy-based ventricular defibrillation: a prospective study.J. Am. Coll. Cardiol.,12, 1259–1264.

    Article  Google Scholar 

  • Lown, B., Crampton, R. S., DeSilva, R. A. andGasho, J. A. (1978) The energy for ventricular defibrillation—too little or too much?New Engl. J. Med.,298, 1252–1253.

    Article  Google Scholar 

  • Lumb, G., Anderson, G. J., Kase, M. L. andWoo, D. V. (1986) Damage in canine hearts following defibrillator shocks.Ann. Clin. Lab. Sci.,16, 171–179.

    Google Scholar 

  • Oberman, A., Myers, A. R., Karunas, J. M. andEpstein, F. H. (1967) Heart size of adults in a natural population—Tecumseh, Michigan. Variation by sex, age, and height.Circ.,35, 724–730.

    Google Scholar 

  • Patton, J. N. andPantridge, J. F. (1979) Current required for ventricular defibrillation.Br. Med. J.,1, 513–514.

    Article  Google Scholar 

  • Ramirez, I. F., Eisenberg, S. R., Lehr, J. L. andSchoen, F. J. (1989) Effects of cardiac configuration, paddle placement and paddle size on defibrillation current distribution: a finiteelement model.Med. & Biol. Eng. & Comput.,27, 587–594.

    Article  Google Scholar 

  • Silvester, P. P. andFerrari, R. L. (1990)Finite elements for electrical engineers, 2nd edn. Cambridge University Press, Cambridge.

    Google Scholar 

  • Tacker, W. A., Galioto, F. M., Giuliani, E., Geddes, L. A. andMcNamara, D. G. (1974) Energy dose for human transchest electrical ventricular defibrillation.N. Engl. J. Med.,290, 214–215.

    Article  Google Scholar 

  • Tacker, W. A. andGeddes, L. A. (1980)Electrical defibrillation. CRC Press, Boca Raton.

    Google Scholar 

  • van Vleet, J. F., Tacker, W. A. Jr, Geddes, L. A. andFerraris, V. (1977) Acute cardiac damage in dogs given multiple transthoracic shocks with a trapezoidal waveform defibrillator.Am. J. Vet. Res.,35, 617–626.

    Google Scholar 

  • Warner, E. D., Dahl, C. andEwy, G. A. (1975) Myocardial injury from transthoracic defibrillator countershock.Arch. Pathol.,99, 55–59.

    Google Scholar 

  • Witsoe, D. A. andKinnen, E. (1967) Electric resistivity of lung at 100 kHz.Med. & Biol. Eng.,5, 239–248.

    Google Scholar 

  • Womack, H. C. (1983) The relationship between human body weight, subcutaneous fat, heart weight and epicardial fat.Human Biol.,55, 667–676.

    Google Scholar 

  • Zienkiewicz, O. C. andTaylor, R. (1989)The finite element method, 4th edn., vol. 1. McGraw-Hill, New York.

    Google Scholar 

  • Zipes, D. P., Fischer, J., King, R. M., Nicoll, A. B. andJolly, W. W. (1975) Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardium.Am. J. Cardiol.,36, 37–44.

    Article  Google Scholar 

  • Zipes, D. P., Herger, J. J., Miles, W. M., Mohamed, Y., Brown, J. W., Spielman, R. andPrystowsky, E. N. (1984) Early experience with an implantable cardioverter.New Engl. J. Med.,311, 485–490.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehr, J.L., Ramirez, I.F., Karlon, W.J. et al. Test of four defibrillation dosing strategies using a two-dimensional finite-element model. Med. Biol. Eng. Comput. 30, 621–628 (1992). https://doi.org/10.1007/BF02446794

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02446794

Keywords

Navigation