Skip to main content
Log in

Theoretical analysis of the relationship between the ratio of ventricular systolic elastance to diastolic stiffness and stroke volume

  • Biomechanics
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The maintenance of adequate blood circulation requires a sufficient ventricular contractility; in addition, to eject blood, the ventricles must first receive a sufficient volume, requiring a low diastolic stiffness. A simplified cardiovascular model was used to derive formulae for stroke volume (SV) as a function of atrial pressure and the ratio of ventricular end-systolic elastance to end-diastolic stiffness. A more complex cardiovascular model was used to assess the ability of the expressions to predict stroke volume under various steady-state conditions. The predicted SV correlated linearly with the model SV over a wide range of diastolic stiffnesses and systolic elastances. The formulae predict that with fixed right atrial pressure the SV is proportional to the ratio of end-systolic elastance to end-diastolic stiffness (GR) for the right ventricle, but relatively insensitive to the ratio (GL) for the left ventricle provided that GL is greater than GR. Model simulations confirmed this. When the right atrial pressure was not fixed increases in GR with fixed GL reduced the right atrial pressure with little change in SV. Similarly, varying GL with fixed GR produced little change in SV. The ratios highlight the importance of diastole to cardiac function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amoore, J. N. (1987) Ventricular interdependence and the transient response of the left ventricle to inspiration: a model study.Cardiovasc. Res.,21, 407–415.

    Google Scholar 

  • Amoore, J. N. andSantamore, W. P. (1989) Model studies of the contribution of ventricular interdependence to the transient changes in ventricular function with respiratory efforts.,23, 683–694.

    Google Scholar 

  • Beyar, R., Sideman, S. andDinnar, U. (1984) Cardiac assist by intrathoracic and abdominal pressure variations: a mathematical study.Med. & Biol. Eng. & Comput.,22, 507–515.

    Google Scholar 

  • Beyar, R., Hausknecht, M.J., Halperin, H. R., Yin, F. C. P. andWeisfeldt, M. L. (1987) Interaction between cardiac chambers and thoracic pressure in intact circulation.Am. J. Physiol.,253, H1252.

    Google Scholar 

  • Bove, A. A. andSantamore, W. P. (1981) Ventricular interdependence.Progr. Cardiovasc. Dis.,23, 365–388.

    Article  Google Scholar 

  • Burton, A. C. (1972)Physiology and biophysics of the circulation. An introductory text. Year Book Medical Publishers Inc., Chicago.

    Google Scholar 

  • Dougherty, A. H., Naccarelli, G. V., Gray, E. L., Hicks, C. H. andGoldstein, R. A. (1984) Congestive heart failure with normal systolic function.Am. J. Cardiol.,54, 778–782.

    Article  Google Scholar 

  • Feneley, M. P., Olsen, C. O., Glower, D. D. andRankin, J. S. (1989) Effect of acutely increased right ventricular afterload on work output from the left ventricle in conscious dogs. Systolic ventricular interaction.Circ. Res.,65, 135–145.

    Google Scholar 

  • Gaasch, W. H. (1990) Diastolic dysfunction of the left ventricle: importance to the clinician.Adv. Intern. Med.,35, 311–340.

    Google Scholar 

  • Gunther, B. andLandis, E. M. (1952) Cardiac resistance to flow; pressure-flow relationships in quiescent and beating turtle heart.Am. J. Physiol.,169, 412–422.

    Google Scholar 

  • Guyton, A. C., Jones, C. E. andColeman, T. G. (1973)Circulatory physiology: cardiac output and its regulation. W. B. Saunders Co., Philadelphia.

    Google Scholar 

  • Hardy, H. H., Collins, R. E. andCalvert, R. E. (1982) A digital computer model of the human circulatory system.Med. & Biol. Eng. & Comput.,20, 550–564.

    Google Scholar 

  • ICRP (1974) Reference Man. Report of the Task Group on Reference Man, International Commission on Radiological Protection, No. 23.

  • Lin, C-K., Levenson, H. andYamashiro, S. M. (1987) Optimization of coronary blood flow during cardiopulmonary resuscitation (CPR).IEEE Trans.,BME-34, 473–481.

    Google Scholar 

  • Maughan, W. L., Shoukas, A. A. K., Sagawa, K. andWeisfeldt, M. L. (1979) Instantaneous pressure-volume relationship of the canine right ventricle.Circ. Res.,44, 309–315.

    Google Scholar 

  • Maughan, W. L., Sunagawa, K. andSagawa, K. (1987) Ventricular systolic interdependence: volume elastance model in isolated canine hearts.Am. J. Physiol.,253, H1381-H1390.

    Google Scholar 

  • Maughan, W. L. andOikawa, R. Y. (1989) Right ventricular function. InHeart-lung interactions in health and disease.Scharf, S. M. andCassidy, S. S. (Eds.), Marcel Dekker, Inc., New York, 179–220.

    Google Scholar 

  • Mirsky, I. (1984) Assessment of diastolic function: suggested methods and future considerations.Circ.,69, 836–841.

    Google Scholar 

  • Packer, M. (1990) Abnormalities of diastolic function as a potential cause of exercise intolerance in chronic heart failure.Circ.,81, Suppl. III, III1-III7.

    Google Scholar 

  • Permutt, S., Wise, R. A. andSylvester, J. T. (1985) Interaction between the circulatory and ventilatory pumps. InThe thorax.Roussos, C. andMacklem, P. T. (Eds.), Marcel Dekker, Inc., New York, 701–735.

    Google Scholar 

  • Santamore, W. P., Constantinescu, M. andLittle, W. C. (1987) Direct assessment of right ventricular transmural pressure.Circ.,75, 744–747.

    Google Scholar 

  • Santamore, W. P. andBurkhoff, D. (1991) Hemodynamic consequences of ventricular interaction as assessed by model analysis.Am. J. Physiol.,260, H146-H157.

    Google Scholar 

  • Sarnoff, S. J. (1955) Myocardial contractility as described by ventricular function curves: observations on Starting's law of the heart.Physiol. Rev.,35, 107–122.

    Google Scholar 

  • Snyder, M. F. andRideout, V. C. (1969) Computer simulations studies of the venous circulation.IEEE Trans.,BME-16, 325–334.

    Google Scholar 

  • Soufer, R., Wohlgelernter, D., Vita, N., Amuchestegu, M., Sorstman, D., Berger, H. J. andZaret, B. L. (1985) Intact systolic left ventricular function in clinical congestive heart failure.Am. J. Cardiol.,55, 1032–1036.

    Article  Google Scholar 

  • Suga, H. andSagawa, K. (1974) Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle.Circ. Res.,35, 117–126.

    Google Scholar 

  • Suga, H., Sagawa, K. andKostiuk, D. P. (1976) Controls of ventricular contractility assessed by pressure-volume ratio, Emax.Cardiovasc. Res.,10, 582–587.

    Article  Google Scholar 

  • Taylor, R. R., Covell, J. W., Sonnenblick, E. H. andRoss, J. (1967) Dependence of ventricular distensibility on filling of the opposite ventricle.Am. J. Physiol.,213, 711–718.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amoore, J.N. Theoretical analysis of the relationship between the ratio of ventricular systolic elastance to diastolic stiffness and stroke volume. Med. Biol. Eng. Comput. 30, 605–612 (1992). https://doi.org/10.1007/BF02446792

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02446792

Keywords

Navigation