Bulletin of Experimental Biology and Medicine

, Volume 121, Issue 3, pp 265–267 | Cite as

A study of the mechanism of action of befol on Ca2+ metabolism in cardiomyocytes using a FURA-2 fluorescent probe

  • P. V. Sergeev
  • P. A. Galenko-Yaroshevskii
  • A. I. Khankoeva
  • A. S. Dukhanin
Pharmacology and Toxicology

Abstract

The dynamics of the Ca-response of cardiomyocytes is studied and the efficiency of befol, verapamil, and amiodarone is compared using various experimental models of stimulation of [Ca2+]i. Befol (1–5 μM) is shown to inhibit the caffeine-and strophanthin G-induced rise of [Ca2+]i. Unlike verapamil and amiodarone, befol exhibits no Ca-blocking activity in modeled K-depolarization. It is concluded that the cardiotropic effect of befol is mediated through its primary action on Na+/Ca2+ exchange in cardiomyocytes, while the cardioplegic effect of verapamil and amiodarone is due to their ability to block the slow Ca2+ inward current.

Key Words

calcium befol amiloride strophanthin caffeine cardiomyocytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. D. Kurskii, S. A. Kosterin, and Z. D. Vorobets,Regulation of the Intracellular Calcium Concentration in Muscles [in Russian], Kiev (1987).Google Scholar
  2. 2.
    V. V. Skibitskii and S. G. Kanorskii,Eksp. Klin. Farmakol.,56, No 5, 23–27 (1993).PubMedGoogle Scholar
  3. 3.
    R. A. Bassani, J. W. Bassani, and D. M. Bers,J. Physiol. (Lond.),476, No 2, 295–308 (1994).Google Scholar
  4. 4.
    M. Chiesi, A. Wrzosek, and S. Grueninger,Mol. Cell. Biochem.,130, No 2, 159–171 (1994).PubMedCrossRefGoogle Scholar
  5. 5.
    J. P. Gomez, D. Potreau, and G. Raymond,Cell. Calcium,15, No 4, 265–275 (1994).PubMedCrossRefGoogle Scholar
  6. 6.
    L. S. Gotzsche and E. M. Pedersen,J. Cardiovasc. Pharmacol.,23, No 1, 13–23 (1994).PubMedCrossRefGoogle Scholar
  7. 7.
    G. Grynkievich, M. Poenie, and R. Y. Tsien,J. Biol. Chem.,206, 3440–3450 (1985).Google Scholar
  8. 8.
    T. Powell, P. E. Tatham, and V. W. Twist,Biochem. Biophys. Res. Commun.,122, No 3, 1012–1019 (1984).PubMedCrossRefGoogle Scholar
  9. 9.
    L. Ransnas, Hjalmarson, E. Sabler, and B. Jacobson,Pharmacol. Toxicol.,61, 107–110 (1987).PubMedCrossRefGoogle Scholar
  10. 10.
    H. Scholz,Basic Res. Cardiol.,84, Suppl. 1, 3–7 (1989).PubMedGoogle Scholar
  11. 11.
    T. Tameyasu, H. Kasugai, M. Tanaka, and H. Harada,J. Gen. Physiol.,103, No 4, 625–645 (1994).PubMedCrossRefGoogle Scholar
  12. 12.
    R. D. Vaughhan-Jones,Br. Med. Bull.,42, No 4, 413–420 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • P. V. Sergeev
    • 1
    • 2
  • P. A. Galenko-Yaroshevskii
    • 1
    • 2
  • A. I. Khankoeva
    • 1
    • 2
  • A. S. Dukhanin
    • 1
    • 2
  1. 1.Department of Molecular Pharmacology and RadiobiologyRussian State Medical UniversityMoscow
  2. 2.Department of PharmacologyKuban Medical AcademyKrasnodar

Personalised recommendations