Skip to main content
Log in

Serial lung model for simulation and parameter estimation in body plethysmography

  • Modelling
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A serial lung model with a compressible segment has been implemented to simulate different types of lung and airway disorders such as asthma, emphysema, fibrosis and upper airway obstruction. The model described can be used during normal breathing, and moreover the compliant segment is structured according to more recent physiological data. A parameter estimation technique was applied and its reliability and uniqueness were tested by means of sine wave input signals. The characteristics of the alveolar pressure/flow patterns simulated with the model agree to a great extent with those found in the literature. In the case of absence of noise the parameter estimation routine produced unique solutions for different simulated pathologic classes. The sensitivity of the different parameters depended on the values belonging to each class of pathology. Some more simplified models are presented and their advantages over the complex model in special types of pathology are demonstrated. Noise added to the simulated flow appeared to have no influence on the estimated parameters, in contradiction to the effects with noise added to the pressure signal. In that case effective resistance was accurately estimated. Where parameters had no influence, as for instance upper airway resistance in emphysema or peripheral airway resistance in upper airway obstruction, the measurement accuracy was less. In all other cases, a satisfactory accuracy could be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

compliance of the lung, litre kPa−1

EE :

square error

K 1 :

linear resistance of the large airways, kPa litre−1 s

K 2 :

turbulent resistance of the large airways, kPa litre−2s2

K 3 :

linear resistance parameter model 2, kPa litre−1s

K4,K5:

linear resistance parameters model 3 for inspiration and expiration, respectively, kPa litre−1s

K6,K7:

linear resistance parameters model 4 for inspiration and expiration, respectively, kPa litre−1s

K8,K9:

turbulent resistance parameters model 4 for inspiration and expiration, respectively, kPa litre−1 s2

R eff :

effective resistance, kPa litre−1s

R c :

linear resistance of the compressible segment, kPa litre−1s

R c 0 :

weighting constant (see text), kPa litre−1s

R p :

resistance line trough extreme pressure points, kPa litre−1s

R s :

linear resistance of the small airways, kPa litre−1s

R u :

total resistance of the upper airways, kPa litre−1s

P A :

alveolar pressure, kPa

P L :

elastic lung recoil, kPa

P L, FRC :

elastic lung recoil at FRC, kPa

P tm :

transmural pressure, kPa

P pl :

pleural pressure, kPa

P s :

pressure drop over the small airways, kPa

V A :

alveolar volume, litre

V L :

alveolar volume+volume of the airways, litre

V c :

volume of the compressible segment, litre

V cN :

maximum volume of the compressible segment for normals, litrs

V′ A :

flow into the alveolar space, litre s−1

V′ m :

flow at the mouth, litre s−1

V c0 :

weighting constant (see text), litre

P tms :

point of curvature for the compressible segment, kPa

References

  • Benerjee, M., Evans, J. N. andJaeger, M. J. (1976) Uneven ventilation in smokers.Respirat. Physiol.,27, 277–291.

    Article  Google Scholar 

  • Bekey, G. A. andBeneken, J. E. W. (1978) Identification of biological systems: a survey.Automatica,14, 41–47.

    Article  MATH  Google Scholar 

  • Bogaard, J. M., Pauw, K. H., Versprille, A., Stam, H., Verbraak, A. F. M. andMaas, A. J. J. (1987a) Maximal expiratory and inspiratory flow-volume curves in bilateral vocal-cord paralysis.ORL,49, 35–41.

    Google Scholar 

  • Bogaard, J. M., Pauw, K. H. andVersprille, A. (1987b) Flow limitation in upper airway obstruction (theoretical analysis), —Ibid.,49, 42–47.

    Google Scholar 

  • Cettl, L., Dvorak, J., Felkel, H. andFeuereisl, R. (1979) Results of simulation of nonhomogeneous ventilatory mechanics for a patient-computer arrangement.Int. J. Bio-Med. Comput.,10, 67–74.

    Article  Google Scholar 

  • Cotes, J. E. (1975)Lung function. Assessment and application in medicine. Blackwell Scientific Publications.

  • Dubois, A. B., Botelho, S. Y. andComroe, J. H. Jr. (1956) A new method for measuring airway resistance in man using a bodyplethysmograph values in normal subjects and in patients with respiratory disease.J. Clin. Invest.,35, 327–335.

    Google Scholar 

  • Feinberg, B. N., Chester, E. H. andSchoeffler, J. D. (1970) Parameter estimation: a diagnostic aid for lung diseases.Instrum. Technol., 40–46.

  • Feinberg, B. N. andChester, E. H. (1972) A dynamic model of pulmonary mechanics to simulate a panting maneuver.Bull. Physio-path. Respirat.,8, 305–322.

    Google Scholar 

  • Golden, J. F., Clark, J. W. Jr., andStevens, P. M. (1973) Mathematical modeling of pulmonary airway dynamics.IEEE Trans.,BME-20, 397–404.

    Google Scholar 

  • Guyatt, A. H., Alpers, J. H., Hill, I. D. andBramley, A. C. (1967) Variability of plethysmographic measurements of airway resistance in man.J. Appl. Physiol.,22, 383–389.

    Google Scholar 

  • Holland, W. P. J., Verbraak, A. F. M., Bogaard, J. M. andBoender, W. (1986) Effective airway resistance: a reliable variable from bodyplethysmography (A theoretical analysis and an application in COLD patients).Clin. Physics & Physiol. Meas.,7, 319–331.

    Article  Google Scholar 

  • Hyatt, R. E. andFlath, R. E. (1966) Influence of lung parenchyma on pressure-diameter behaviour of dog bronchi,J. Appl. Physiol.,21, 1448–1452.

    Google Scholar 

  • Hyatt, R. E. (1983) Expiratory flow limitation.J. Appl. Physiol.: Respirat. Environ. Exercise Physiol.,55, 1–8.

    Google Scholar 

  • Lambert, R. K., Wilson, T. A., Hyatt, R. E. andRodarte, J. R. (1982) A computational model for expiratory flow. —Ibid.52, 44–56.

    Google Scholar 

  • Macklem, P. T. andMead, J. (1968) Factors determining maximum expiratory flow in dogs.J. Appl. Physiol.,25, 159–169.

    Google Scholar 

  • Marquardt, D. W. (1963) An algorithm for least-squares estimation of nonlinear parameters.SIAM J.,11, 431–441.

    MATH  MathSciNet  Google Scholar 

  • Martin, H. B. andProctor, D. F. (1958) Pressure-volume measurements on dog bronchi.J. Appl. Physiol.,13, 337–343.

    Google Scholar 

  • Martin, C. J., Young, A. C. andIshikawa, K. (1965) Regional lung mechanics in pulmonary disease.J. Clin. Invest.,44, 906–913.

    Article  Google Scholar 

  • Matthys, H. (1971) Ganzkörperplethysmographie.Pneumonology I,146, 216–231.

    Article  Google Scholar 

  • Matthys, H., Fischer, J., Ulrichs, H.Ch. andRühle, K. H. (1979) Functional patterns of different lung diseases for computer-assisted diagnostic procedures.Progr. Respirat. Res.,11, 188–201.

    Google Scholar 

  • Mead, J., Turner, J. M., Macklem, P. T. andLittle, J. B. (1967) Significance of the relationship between lung recoil and maximum expiratory flow.J. Appl. Physiol.,22, 95–108.

    Google Scholar 

  • Murtagh, P. S., Proctor, D. F., Permutt, S., Kelly, B. L. andEvering, S. (1971) Bronchial mechanics in excised dog lobes. —Ibid.,31, 403–408.

    Google Scholar 

  • Otis, A. B., McKerrow, C. B., Bartlett, R. A., Mead, J., McIlroy, M. B., Selverstone, N. J. andRadford, E. P. Jr (1956) Mechanical factors in distribution of pulmonary ventilation.J. Appl. Physiol.,8, 427–443.

    Google Scholar 

  • Pride, N. B., Permutt, S., Riley, R. L. andBromberger-Barnea, B. (1967) Determinants of maximal expiratory flow from the lungs. —Ibid.,23, 646–662.

    Google Scholar 

  • Pride, N. B. (1971) The assessment of airflow obstruction (role of measurements of airway resistance and of tests of forced expirations).Br. J. Dis. Chest.,65, 135–169.

    Article  Google Scholar 

  • Reinert, M., Heise, D. andTrendelenburg, F. (1975)_Zum Auswertemodus phasenverschobener Resistancekurven.Pneumologie,152, 147–156.

    Article  Google Scholar 

  • Rohrer, F. (1915) Der Strömungswiderstand in der menschlichen Atemwegen und der Einfluss der unregelmässigen Verzweigung des Bronchialsystems auf der Atmungsverlauf in verschieden Lungenbezirken.Pflügers. Arch. Ges. Physiol.,162, 225–259.

    Article  Google Scholar 

  • Smidt, U., Finkenzeller, P. andRennings, C. (1975) On-line Computereinsatz in der Ganzkörperplethysmographie zur Berechnung der mittleren Resistance.Pneumologie,151, 223–231.

    Article  Google Scholar 

  • Ulmer, W. T. andReif, E. (1965) Die obstruktiven Erkrankungen der Atemwege. Klinische Bedeutung und objektiver Nachweis mit der Ganzkörperplethysmographie.Dtsch. Med. Wschr.,90, Jg. 41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verbraak, A.F.M., Bogaard, J.M., Beneken, J.E.W. et al. Serial lung model for simulation and parameter estimation in body plethysmography. Med. Biol. Eng. Comput. 29, 309–317 (1991). https://doi.org/10.1007/BF02446714

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02446714

Keywords

Navigation