Kinematic analysis of human walking gait using digital image processing

  • M. O'Malley
  • D. Lynn A. M. de Paor
Computing and Data Processing


A system using digital image processing techniques for kinematic analysis of human gait has been developed. The system is cheap, easy to use, automated and provides useful detailed quantitative information to the medical profession. Passive markers comprising black annuli on white card are placed on the anatomical landmarks of the subject. Digital images at the standard television rate of 25 per second are acquired of the subject walking past a white background. The images are obtained, stored and processed using standard commercially available hardware, i.e. video camera, video recorder, digital framestore and an IBM PC. Using a single-threshold grey level, all the images are thresholded to produce binary images. An automatic routine then uses a set of pattern recognition algorithms to locate accurately and consistently the markers in each image. The positions of the markers are analysed to determine to which anatomical landmark they correspond, and thus a stick diagram for each image is obtained. There is also a facility where the positions of the markers may be entered manually and errors corrected. The results may be presented in a variety of ways: stick diagram animation, sagittal displacement graphs, flexion diagrams and gait parameters.


Digital image processing Gait analysis Kinematics Pattern recognition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andriacchi, T. P., Hampton, S. J. andGalante, J. O. (1979) Three dimensional coordinate data processing in human motion analysis.J. Biomech. Eng.,101, 279–283.Google Scholar
  2. Baumann, J. U. (1984) Clinical experience of gait analysis in the management of cerebral palsy.Prosthet. & Orthot. Int.,8, 29–32.Google Scholar
  3. Crouse, J., Wall, J. C. andMarble, A. E. (1987) Measurement of the temporal and spatial parameters of gait using a micro-computer based system.J. Biomed. Eng.,9, 64–68.Google Scholar
  4. Dowson, D. andWright, V. (1981)Introduction to the biomechanics of joints and joint replacement. Mechanical Engineering Publications Ltd., London.Google Scholar
  5. Duda, R. O. andHart, P. E. (1973)Pattern classification and scene analysis. John Wiley & Sons, New York.MATHGoogle Scholar
  6. Evans, A. L., Duncan, G., Gilchrist, W. andCurrie, G. D. (1991) Gait analysis in the home. Proc. 1st European Conf. Biomedical Engineering, Nice, Feb., 212–213.Google Scholar
  7. Ferrigno, G. andPedotti, A. (1985) “ELITE” a digital dedicated hardware system for motion analysis via real time signal processing.IEEE Trans.,BME-32, 943–950.Google Scholar
  8. Ferrigno, G., Borghese, N. A. andPedotti, A. (1990) Pattern recognition in 3-D automatic human motion analysis.J. Photogrammetry & Remote Sensing,45, 227–246.CrossRefGoogle Scholar
  9. Finley, F. R. andVarpovich, P. V. (1964) Electrogoniometric analysis of normal and pathological gaits.The Research Quarterly,35, 379–384.Google Scholar
  10. Gonzalez, R. andWintz, P. (1987)Digital image processing. Addison Wesley, Reading, Massachusetts.Google Scholar
  11. Goodwill, J. (1988) Locomotion: analysis of gait normal and abnormal. InRehabilitation of the physically disabled adult.Goodwill, J. andChamberlain, M. (Eds.) Croom, Helm & Sheridan Medical Books, London & Sydney.Google Scholar
  12. Grieve, D. W. (1969) The assessment of gait.Physiotherapy,55, 452–460.Google Scholar
  13. Johnson, E. W. (1988)Pract. electromyography. Williams & Wilkins, Baltimore.Google Scholar
  14. Kirtley, C., Whittle, M. W. andJefferson, R. J. (1985) Influence of walking speed on gait parameters.J. Biomed. Eng.,7, 282–288.Google Scholar
  15. Law, H. T. andMinns, R. A. (1989) Measurement of the spatial and temporal parameters of gait.Physiotherapy,75, 81–84.CrossRefGoogle Scholar
  16. Leo, T. andMacellari, V. (1979) On line microcomputer system for gait analysis data acquisition based on commercially available optoelectronic devices.Biomechanics, vol. VII. University Park Press, Baltimore, Maryland.Google Scholar
  17. Morris, J. R. W. (1973) Accelerometry—a technique for the measurement of human body movements.J. Biomech.,6, 729–736.CrossRefGoogle Scholar
  18. Murray, M. P., Drought, A. B. andKory, R. C. (1964) Walking patterns of normal men.J. Bone & Joint Surg.,48A, 335–360.Google Scholar
  19. Pezzack, J. C., Norman, R. W. andWinter, D. A. (1977) An assessment of derivative determining techniques used for motion analysis.J. Biomechanics,10, 377–382.CrossRefGoogle Scholar
  20. Verde, A. L., Macellari, V. andTorre, M. (1991) Gait analysis through a mat-like device. Proc. 1st European Conf. on Biomedical Engineering, Nice, Feb., 214–215.Google Scholar
  21. Whittle, M. W. (1982) Calibration and performance of a 3-dimensional television system for kinematic analysis.J. Biomechanics,15, 185–196.CrossRefGoogle Scholar
  22. Winter, D. A., Greenlaw, R. K. andHobson, D. A. (1972a) A microswitch shoe for use in locomotion studies. —Ibid.,,5, 553–554.CrossRefGoogle Scholar
  23. Winter, D. A., Greenlaw, R. K. andHobson, D. A. (1972b) Television-computer analysis of kinematics of human gait.Comput. & Biomed. Res.,5, 498–504.CrossRefGoogle Scholar
  24. Winter, D. A. (1982) Camera speeds for normal and pathological gait analysis.Med. & Biol. Eng. & Comput.,20, 408–412.CrossRefGoogle Scholar
  25. Winter, D. A. (1990)The biomechanics and motor control of human movement. John Wiley & Sons, New York.Google Scholar
  26. Woltring, H. J. (1974) New possibilities for human motion studies by real-time light spot position measurement.Biotelemetry,1, 132–146.Google Scholar
  27. Woltring, H. J. (1975) Single and dual-axis lateral photodetectors of rectangular shape.IEEE Trans.,ED-22, 581–590.Google Scholar
  28. Woltring, H. J. (1976) Calibration and measurement in 3-dimensional monitoring of human motion by optoelectronic means.Biotelemetry,3, 65–96.Google Scholar
  29. Woltring, H. J. andMarsolais, E. B. (1980) Optoelectronic (Selspot) gait measurement in two and three dimensional space—a preliminary report.Bull. of Prosthetics Res.,17, 46–52.Google Scholar

Copyright information

© IFMBE 1993

Authors and Affiliations

  • M. O'Malley
    • 1
  • D. Lynn A. M. de Paor
    • 1
  1. 1.Department of Electronic & Electrical EngineeringUniversity CollegeDublinIreland

Personalised recommendations