Advertisement

Acoustic analysis of infantile stridor: A review

  • M. Malone
  • N. D. Black
  • M. Lydon
  • M. Cinnamond
Review

Abstract

The review compares five methods that utilise electronic/computer acoustic processing techniques for the analysis of infantile stridor sounds. The first method uses traditional spectrographic techniques to produce time/frequency/intensity three-dimensional representation of the waveform. The second method is computer-based and uses the fast Fourier transformation (FFT) to show the frequency composition of the waveform. The third uses linear prediction coefficients (LPCs) to produce a power spectrum and inverse filtering to estimate the cross-sectional area of the human upper airway. The fourth technique employs a proprietary digital filterbank to analyse normal infant vocalisations, which may be used as a control by subsequent researchers. In the fifth method, a physiologically based digital filterbank, designed to closely model the human ear response, is proposed. It is envisaged that this approach will offer the flexibility of all the previous techniques and also closely model the analysis procedure carried out using subjective auscultation. It is concluded that none of the above techniques are sufficiently robust to provide unambiguous diagnosis of stridor type and that a reappraisal is required in terms of feature extraction so that relevant features can be identified. To this end, the authors propose that a physiologically based model of the human airway, including the vocal cords, be developed as an aid to the assessment of acoustic features.

Keywords

Digital filtering Signal processing Stridor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, D. R. andStrong, W. J. (1985) A model for the synthesis of natural sounding vowels.J. Acoust. Soc. Am.,76, 58–69.CrossRefGoogle Scholar
  2. Ambikairayah, E., Black, N. D. andLinggard, R. (1989) Digital filter simulation of the basilar membrane.Computer Speech & Language,3, 105–118.CrossRefGoogle Scholar
  3. Atal, B. S. (1970) Speech analysis and synthesis by linear prediction of the speech wave.J. Acoust. Soc. Am.,47, 65(a).Google Scholar
  4. Atal, B. S., Chang, J. J., Tukey, J. W. andMathews, M. V. (1978) Inversion of articulatory-to-acoustic transformation in the vocal tract by a computer sorting technique.J. Acoust. Soc. Am.,63, 1535–1555.CrossRefGoogle Scholar
  5. Bendat, J. S. andPiersol, A. G. (1971)Random data analysis and measurement procedures. Wiley-Interscience, New York.MATHGoogle Scholar
  6. Black, N. D. (1983) Filterbank analysis of speech. Ph.D. thesis, Queen's University of Belfast.Google Scholar
  7. Black, N. D. andIrvine, D. (1992) Physiologically based digital filterbank.Automedica,14, 145–153.Google Scholar
  8. Brigham, E. O. (1988)The fast Fourier transform and its applications. Prentice-Hall.Google Scholar
  9. Chowdhury, S. K. andMajumder, A. K. (1981) Digital spectrum analysis of respiratory sound.IEEE Trans.,BME-28, 784–788.Google Scholar
  10. Cohen, A. andLandsberg, D. (1984) Analysis and automatic classification of breath sounds. —Ibid.,,BME-31, 585–590.Google Scholar
  11. Cotton, R. andReilly, J. S. (1983) Stridor and airway obstruction. InPaediatric otolaryngology.Bluestone, C. D. andStool, S. E. (Eds.), Saunders, Philadelphia, Pennsylvania.Google Scholar
  12. Flanagan, J. L. (1972)Speech analysis, synthesis and perception, 2nd edn. Springer, New York.Google Scholar
  13. Flanagan, J. L. andIshizaka, K. (1978) Computer model to characterize the air volume displaced by the vibrating vocal cords.J. Acoust. Soc. Am.,63, 1559–1565.CrossRefGoogle Scholar
  14. Fletcher, H. (1940) Auditory patterns.Rev. Modern Physics,12, 47–65.CrossRefGoogle Scholar
  15. Gerber, S. E. (1985) Acoustical analyses of neonates vocalisations.Int. J. Paediatr. Otorhinolaryngol.,10, 1–8.CrossRefGoogle Scholar
  16. Gray, L., Denneny, J. C. III, Carvajal, H. andJahrsdoerfer, R. (1985) Fourier analysis of infantile stridor, preliminary data. —Ibid.,,10, 191–199.CrossRefGoogle Scholar
  17. Hirschberg, J. (1980) Acoustic analysis of pathological cries, stridors, and coughing sounds in infancy. —Ibid.,,2, 287–300.CrossRefGoogle Scholar
  18. Ishizaka, K. andFlanagan, J. L. (1972) Synthesis of voiced souds from a two mass model of the vocal chords.Bell Syst. Tech. J.,51, 1233–1267.Google Scholar
  19. Itakura, F. andSaito, S. (1966) The theoretical consideration of statistical optimum methods for speech spectral density. Electrical Comm. Lab., NTT, Tokyo, Report 3107Google Scholar
  20. Kelly, J. L. andLochbaum, C. C. (1962) Speech synthesis. IEEE Int. Conf. on Acoustics, Speech and Sig. Proc., 127–130.Google Scholar
  21. Klatt, D. H. (1982)Speech processing strategies based on auditory models.Carlson andGranstorm, (Eds.), Elsevier, North Holland.Google Scholar
  22. Koizumi, T., Taniguchi, S. andHiromitsu, S. (1987) Two-mass models of vocal cords for natural sounding voice synthesis.J. Acoust. Soc. Am.,82, 1179–1192.CrossRefGoogle Scholar
  23. Ladefoged, P. (1980)A course in phonetics. Harcourt Brace Jovanovich.Google Scholar
  24. Leiberman, A., Cohen, A. andTal, A. (1986) Digital signal processing of stridor and snoring in children.Int. J. Paediatr. Otorhinolaryngol.,12, 173–185.CrossRefGoogle Scholar
  25. Linggard, R. andBoyd, I. (1981) High-speed digital filter bank.IEE Proc., Part E,128, 212–217.Google Scholar
  26. Malone, M. T., Lydon, M., Black, N. D. andCinnamond, M. (1989) The acoustical analysis of infantile stridor using a physiologically-based filterbank. Proc. 11th Ann. Int. Conf. IEEE Eng. in Med. & Biol. Soc., Seattle, Washington, USA, Part 2, 671–672.Google Scholar
  27. Markel, J. D. andGray, A. H. (1976)Linear prediction of speech. Springer Verlag.Google Scholar
  28. McKusick, V. A., Webb, G. H. andJenkins, J. T. (1955) The acoustic basis of the chest examination.Am. Rev. Tuberc. Pulm. Dis.,72, 12–34.Google Scholar
  29. Mermelstein, P. (1975) Auto-segmentation of speech into syllabic units.J. Acoust. Soc. Am.,58, 880–883.CrossRefGoogle Scholar
  30. Murphy, R. L. (1981) Auscultation of the lung: past lessions, future possibilities.Thorax,36, 99–107.CrossRefGoogle Scholar
  31. Nugent, S. T. andFinley, J. P. (1983) Spectral analysis of periodic and normal breathing in infants.IEEE Trans.,BME-30, 672–675.Google Scholar
  32. O'Shaughnessy, P. (1987)Speech communication: human and machine. Addison-Wesley.Google Scholar
  33. Schreiber, J. R., Anderson, W. F., Wegmann, M. J. andWaring, W. W. (1981) Frequency analysis of breath sounds by phonopneumography.Med. Instrum.,15, 331–334.Google Scholar
  34. Sondhi, M. M. (1974) Model for wave propagation in a lossy vocal tract.J. Acoust. Soc. Am.,55, 1070–1075.CrossRefGoogle Scholar
  35. Sondhi, M. andSchroeter, J. (1987) A hybrid time-frequency domain articulatory speech synthesiser.IEEE Trans.,ASSP-35, 955–967.Google Scholar
  36. Texas Instruments (1990) Digital signal processing applications with the TMS320 family. Theory, Algorithm, and Implementations, Vol. 3.Google Scholar
  37. Titze, I. R. (1984) Parameterization of the glottal area, glottal flow and vocal fold contact area.J. Acoust. Soc. Am.,75, 570–580.CrossRefGoogle Scholar
  38. Tobias, J. V. (1970)Modern auditory theory. Apprentice Press.Google Scholar
  39. Urquhart, R. B., McGhee, J. andMacleod, E. S. (1981) The diagnostic value of pulmonary sounds: a preliminary study by computer aided diagnosis.Comput. Biol. Med.,11, 129–139.CrossRefGoogle Scholar
  40. van Bekesy, G. (1960)Experiments in hearing. McGraw-Hill.Google Scholar
  41. Wakita, H. andFant, G. (1978) Toward a better vocal tract model.Speech Transmis. Lab.-Quarterly Progr. & Status Report,1, 9–29.Google Scholar
  42. Wright, G. T. andOwens, F. J. (1990) Articulatory speech synthesis using a time domain model. Proc. EUSIPCO-90, Barcelona, Spain, Vol. 2, 1131–1134.Google Scholar
  43. Zue, V. W. (1982) Acoustic-phonetic knowledge representation: implications from spectrographic reading experiments. InAutomatic speech analysis and recognition.Hatton, J.-P. (Ed.), NATO Advanced Studies.Google Scholar

Copyright information

© IFMBE 1993

Authors and Affiliations

  • M. Malone
    • 1
  • N. D. Black
    • 1
  • M. Lydon
    • 1
  • M. Cinnamond
    • 2
  1. 1.Department of Electrical and Electronic EngineeringUniversity of Ulster at JordanstownAntrimNorthern Ireland, UK
  2. 2.Department of MedicineThe Queen's University of BelfastBelfastNorthern Ireland, UK

Personalised recommendations