Present and future status of noninvasive selective deep heating using RF in hyperthermia

  • H. Kato
  • T. Ishida


To achieve hyperthermia using electromagnetic energy, RF of under 100 MHz is basically suitable for the external heating of the deep portions of the body. For applicators using such RF, the following types are considered: capacitive, inductive, radiative and hybrid. With radiative applicators, the intensity of the EM waves radiated from the applicator decreases with propagation into the material to be heated, but the phased annular array of radiative applicators potentially increases the intensity of the EM energy in the deep portion owing to the interference of the waves. Using this method, the focusing of EM energy depends on the dielectric properties of the material to be heated. With respect to RF heating at a lower frequency than the RF used for the annular phased array, some devices have been said to concentrate EM energy in the deep portions, where the characteristics of ‘wave’ are not utilised. To this end, some methods using capacitive electrodes, an inductive coil, or a combination of both, are being designed. The results of using such methods have shown that it is possible to supply sufficient EM energy to the muscle layers deep in the material to be heated, without heating the fat layers excessively.


Equipment Hyperthermia RF heating 


  1. ABE, M., HIRAOKA, M., TAKAHASHI, M., EGAWA, S., MATSUDA, C., ONOYAMA, Y., MORITA, K., KAKEHI, M. and SUGAHARA, T. (1986) Multi-institutional studies on hyperthermia using an 8-MHz radiofrequency capacitive heating device (Thermotron RF-8) in combination with radiation for cancer therapy. Cancer, 58, 1589–1595.Google Scholar
  2. ALLEN, S., KANTOR, G., BASSEN, H. and RUGGERA, P. (1988) CDRH RF phantom for hyperthermia systems evaluations. Int. J. Hyperthermia, 4, 17–23.Google Scholar
  3. AMEMIYA, Y., TADA, H. and ASAHINA, G. (1987) Numerical simulation of temperature rise inside a cylinder simulating a human body exposed by surrounding RF waves. In Hyperthermic oncology ’86 in Japan. ONOVAMA, Y. (Ed.), Mag Bros., 55–56.Google Scholar
  4. ANHALT, D., HYNYNEN, K., DEYOUNG, D., SHIMM, D., KUNDRAT, M. and CETAS, T. (1990) The CDRH helix: an in rive evaluation. Int. J. Hyperthermia, 6, 241–252.Google Scholar
  5. ASTRAHAN, M. A. (1982) A localized current field hyperthermia system for use with 192-iridium interstitial implants. Med. Phys., 9, 419–424.Google Scholar
  6. BREZOV1CH, I. A., LILLY, M. B., DURANT, J. R. and BICHAROS, D. B. (1981) A practical system for clinical radiofrequency hyperthermia. Int. J. Radiat. Oncol. Biol. Phys., 7, 423–430.Google Scholar
  7. BUETCHLER, D. N., CETAS, T. C. and GOPAL, M. K. (1987) CDRH torso helix: a physical evaluation (abstract). 35th Ann. Meeting Radiat. Res. Soc./7th Ann. Meeting N. Am. Hyperthermia Group, Dg-20.Google Scholar
  8. CHEUNG, A. Y. and AL-ATRASH, J. (1987) Microwave hyperthermia for cancer therapy. IEEE Proc., 134, 493–522.Google Scholar
  9. CHIVE, M., PLANCOT, M., GIAUX, G., PREVOST, B., DELANNOY, J., RINGEISEN, V., MATHIEU, J. M. and LAMPERT, D. (1984) Clinical evaluation of ‘Hylcar’ an industrial system for microwave hyperthermia controlled by radiometry. In Hyperthermic oncology 1984, Vol. 1, Summary Papers. OVERGAARD, J. (Ed.), Taylor & Francis, London, 859–862.Google Scholar
  10. CHOU, C.-K. (1985) Evaluation of microwave surface applicators (abstract). 33rd Ann. Meeting Radiat. Res. Soc., Bb-1, in oral presentation.Google Scholar
  11. CHOU, C.-K., GUY, A. W., McDouGALL, J. A., DONG, A. and LuK, K. H. (1986) Thermographically determined specific absorption rate patterns of 434-MHz applicators. Med. Phys., 13, 385–390.Google Scholar
  12. CHOU, C.-K. (1987) Phantoms for electromagnetic heating studies. NATO ASI Set. E, 127, 294–318.Google Scholar
  13. CHOU, C.-K. (1990) Use of heating rate and specific absorption rate in the hyperthermia clinic. Int. J. Hyperthermia, 6, 367–370.Google Scholar
  14. CORRY, P. M. and JABBOURY, K. (1988) Magnetic induction hyperthermia with transaxial coils. In Hyperthermic oncology 1988, Vol. 2. SUGA~ARA, T. and SAITO, M. (Eds.), Taylor & Francis, London, 595–597.Google Scholar
  15. DE LEEUW, A. A. C., LAGENDIJK, J. J. W. and VAN DEN BERG, P. M. (1990) SAR distribution of the ‘coaxial TEM’ system with variable aperture width: measurements and model computations. Int. J. Hyperthermia, 6, 445–451.Google Scholar
  16. DENMAN, D. L., ELSON, H. R., LEWIS, G. C., BRENEMAN, J. C., CLAUSEN, C. L., DINE, J. and ARON, B. S. (1988) The distribution of power and heat produced by interstitial microwave antenna arrays: I. comparative phantom and canine studies. Int. J. Radiat. Oncol. Biol. Phys., 14, 127–137.Google Scholar
  17. DOGGETT, S. W., LUK, K. H., CHAN, K. W., VORA, N., CHOU, C, K. and FINOLEY, D. O. (1987) Initial experience with the Cheung Laboratories’ Hyperthermia System 1000 (abstract). 7th Ann. Meeting N. Am. Hyperthermia Group, Bd-ll.Google Scholar
  18. DURNEY, C. H. (1987) Electromagnetic regional heating. NATO ASI Set. E, 127, 240–249.Google Scholar
  19. ELLIOTT, R. S., HARRISON, W. H. and STORM, F. K. (1982) Hyperthermia: electromagnetic heating of deep-seated tumors. IEEE Trans., BME-29, 61–64.Google Scholar
  20. EMANI, B., PEREZ, C., NUSSBAUM, G. and LEYBOVICH, L. (1984) Regional hyperthermia in treatment of recurrent deep-seated tumors: preliminary report. In Hyperthermic oncology 1984. OVERGAARO, J. (Ed.), Taylor & Francis, London, 605–608.Google Scholar
  21. FRANCONI, C., TIBERIO, C. A., RAGANELLA, L. and BEGNOZZI, L. (1986) Low-frequency RF twin-dipole applicator for intermediate depth hyperthermia. IEEE Trans., MTT-34, 612 619.Google Scholar
  22. FRANCONI, C. (1987) Hyperthermia heating technology and devices. NATO ASI Ser. E, 127, 80–122.Google Scholar
  23. FUJITA, Y., KATO, H. and ISHIDA, T. (1993) An RF concentrating method using inductive aperture-type applicators. IEEE Trans., BME-40, (1), 110–113.Google Scholar
  24. GAUTHERIE, M., EL AKOUM, H., AYME, F., FISCHER, L., LAUCHE, H., METHLIN, A. and JUNG, G. M. (1989) External capacitive radio-frequency hyperthermia: technical advances, phantom studies, clinical trials. In Hyperthermic ontology 1988, Vol. 2. SUGAHARA, T. and SAITO, M. (Eds.), Taylor & Francis, London, 700–702.Google Scholar
  25. GIBBS, F. A. (1984) Non-invasive electromagnetic heating techniques and the operational characteristics of the annular phased array. Front. Radiat. Ther. Oncol., 18, 56–61.Google Scholar
  26. GROSS, E. J., CETAS, T. C., STAUFFER, P. R., Liu, R.-L. and LUMORI, M. L. D. (1990) Experimental assessment of phased-array heating of neck tumors. Int. J. Hyperthermia, 6, 453–474.Google Scholar
  27. GUERQUIN-KERN, J.-L., HAGMANN, M. J. and LEVIN, R. L. (1988) Experimental characterization of helical coils as hyperthermia applicators. IEEE Trans., BME-35, 46–52.Google Scholar
  28. GUY, A. W. and LEHMANN, J. F. (1966) On the determination of an optimum microwave diathermy frequency for a direct contact applicator. Ibid., BME-13, 76–87.Google Scholar
  29. GUY, A. W. (1971) Analyses of electromagnetic fields induced in biological tissues by thermographic studies on equivalent phantom models. Ibid., MTT-19, 205–214.Google Scholar
  30. HAGMANN, M. J., LEVIN, g. L. and TURNER, P. F. (1985) A comparison of the annular phased array to helical coil applicators for limb and torso hyperthermia. Ibid., BME-32, 91 6–927.Google Scholar
  31. HAND, J. W., CrtEETHAM, J. L. and HIND, A. J. (1986) Absorbed power distributions from coherent microwave arrays for localized hyperthermia. Ibid., MTT-34, 484–489.Google Scholar
  32. HAND, J. W., PAULSEN, K. D., LUMORI, M. L. D., GOPAL, M. K., CETAS, T. C. and ALKHAIRI, S. (1988) Microwave array applicators for superficial hyperthermia. In Hyperthermic oncology 1988, Vol. 1, SUGAHARA, T. and SAITO, M. (Eds.), Taylor & Francis, London, 827–828.Google Scholar
  33. HAND, J. W. (1990) Biophysics and technology of electromagnetic hyperthermia. In Methods of external hyperthermic heating. GAUTHERIE, M. (Ed.), Springer-Verlag, Berlin, 1–59.Google Scholar
  34. HARA, S. and HASEBE, K. (1984) Behavior of metal piece placed in capacitive RF current path. In Hyperthermic oncology 1984. OVERGAARD, J. (Ed.), Taylor & Francis, London, 549–552.Google Scholar
  35. HARRISON, W. H. and STORM, F. K. (1989) Loosely coupled coaxial TEM applicators for deep-heating. Int. J. Hyperthermia, 5, 297–306.Google Scholar
  36. HERBST, M., SEEGENSCHMIEDT, M. H. and KETTNER, M. (1989) Thermal distributions using 13.56 MHz radiofrequency capacitive heating. In Hyperthermie Oncology 1988, Vol. 2. SUGAHARA, T. and SAITO, M. (Eds.), Taylor & Francis, London, 695–697.Google Scholar
  37. HIRAOKA, M. and ABE, M. (1985) Clinical application of localized hyperthermia combined with radiotherapy. Igaku No Ayumi, 135, 877–882.Google Scholar
  38. HISAZUMI, H. and NAKAJIMA, K. (1988) Eight-MHz RF hyperthermia for urological malignancies. Jpn. J. Cancer Chemother., 15, 1382–1386.Google Scholar
  39. HOLT, J. A. G. (1980) Alternative therapy for recurrent Hodgkin’s disease. Br. J. Radiol., 53, 1061–1067.Google Scholar
  40. HORNBACK, N. B., SHUPE, R., SHIDNIA, H., JOE, B. T., SAYOC, E., GEORGE, R. and MARSHALL, C. (1979) Radiation and microwave therapy in the treatment of advanced cancer. Radiol., 130, 459–464.Google Scholar
  41. ISKANDER, M. F., TURNER, P. F., DuBow, J. B. and KAO, J. (1982) Two-dimensional technique to calculate the EM power deposition pattern in the human body. J. Microwave Power, 17, 175–185.Google Scholar
  42. ISSELS, R. D., WADEPOHL, M., TILING, K., NUELLER, M., SAUER, H. and WILMANNS, W. (1988) Regional hyperthermia combined with systemic chemotherapy in advanced abdominal and pelvic tumors: first results of a pilot study employing an annular phased array applicator. Recent Results Cancer Res., 107, 236–243.Google Scholar
  43. JOHNSON, R. H. (1986) New type of compact electromagnetic applicator for hyperthermia in the treatment of cancer. Electron. Lett., 22, 591–593.Google Scholar
  44. JOHNSON, R. H., PREECE, A. W., HAND, J. W. and JAMES, J. R. (1987) A new type of lightweight low-frequency electromagnetic hyperthermia applicator. 1EEE Trans., MTT-35, 1317–1321.Google Scholar
  45. KANTOR, G. (1984) Electromagnetic hyperthermia treatment of cancer: physics and engineering aspects (abstract). Hyperthermic Oncology 4th Int. Symp., M19.Google Scholar
  46. KAPP, D. S., FESSENDEN, P., SAMULSKI, T. V., BAGSHAW, M. A., Cox, R. S., LEE, E. R., LOHRBACH, A. W., MEYER, J. L. and PRIONAS, S. D. (1988) Stanford University institutional report. Phase I evaluation of equipment for hyperthermia treatment of cancer. Int. J. Hyperthermia, 4, 75 115.Google Scholar
  47. KASHYAP, S. and WYSLOUZIL, W. (1987) New inductive applicators for electromagnetic hyperthermia. J. Microwave Power, 22, 13–18.Google Scholar
  48. KATO, H. and ISHIDA, T. (1982) Physical basis of RF hyperthermia for cancer therapy (4). A device for non-invasive local deep heating in hyperthermia treatment. J. Radiat. Res., 23, 228–233.Google Scholar
  49. KATO, H., SUGAHARA, Z. and ISHIDA, Z. (1985) An RF-focusing method for deep heating. In Hyperthermia in cancer therapy. ABE, M., TAKAHASHI, M. and SUGAHARA, T. (Eds.), Mag Bros., Tokyo, 174–175.Google Scholar
  50. KATO, H., FURUKAWA, M., UCHIDA, N., KASAI, T., FUJITA, Y., KODA, F., KURODA, H. and ISHIDA, T. (1990) Development of inductive heating equipment using an inductive aperture-type applicator. Int. J. Hyperthermia, 6, 155–168.Google Scholar
  51. KATO, H., HAND, J. W., PRIOR, M. V., FURUKAWA, M., YAMAMOTO, O. and ISHIDA, T. (1991a) Control of specific absorption rate distribution using capacitive electrodes and inductive aperturetype applicators: implications for radiofrequency hyperthermia. IEEE Trans., BME-38, 644–647.Google Scholar
  52. KATO, H., FURUKAWA, M., UCHIDA, N., KASAI, T. and ISHIDA, T. (1991b) A new capacitive type heating method inducing less heat in fat layers. Jpn. J. Hypertherrn. Oncol., 7, 452–454.Google Scholar
  53. KATO, H., FURUKAWA, M., KASAI, T. and ISHIDA, T. (1992) An RF focusing method using inductive aperture-type applicators. In Hyperthermic oncology in Japan "91. KAMATA, R. (Ed.), Shinohara Publishers, Tokyo, 227–228.Google Scholar
  54. KOTSUKA, Y., MOTOYAMA, H., KATOU, H., HANKUI, E., SASAKI, T. and NARIKAWA, M. (1991) Development of a ferrite core applicator for deep direct induction heating. In Hyperthermic oncology in Japan 90. SEKmA, K. (Ed.), Asahi Printing & Publishing, Okayama, 259–260.Google Scholar
  55. KUBOTA, Y., SAKAI, N., WATAI, K., KAKEI, M. and MATSUI, K. (1989) Hyperthermia by regional capacitive heating. In Hyperthermic oncology 1988, Vol. 2. SUGAHARA, T. and SAITO, M. (Eds.), Taylor & Francis, London, 605–608.Google Scholar
  56. LAGENDIJK, J. J. W. (1983) A new coaxial TEM radiofrequency/microwave applicator for non-invasive deep-body hyperthermia. J. Microwave Power, 18, 367–375.Google Scholar
  57. LAU, R. W. M., SHEPPARD, R. J., HOWARD, G. and BLEEHEN, N. M. (1986) The modelling of biological systems in three dimensions using the time domain finite-difference method: II. The application and experimental evaluation of the method in hyperthermia applicator design. Phys. Med. Biol., 31, 1257–1266.Google Scholar
  58. LEE, C. K. K., SONG, C. W., RHEE, J. and LEVITT, S. H. (1989) Minnesota experience in deep heating with Thermotron RF-8. In Hyperthermic ontology 1988, Vol. 2. SUGAHARA, T. and SAITO, M. (Eds.), Taylor & Francis, London, 601–602.Google Scholar
  59. LINDHOLM, C. E., KJELLEN, E., NILSSON, P., LANDBERG, T. and PERSSON, B. (1988) Microwave-induced hyperthermia and radiotherapy in human superficial tumours: clinical results with a comparative study of combined treatment versus radiotherapy alone. Recent Results Cancer Res., 107, 152–156.Google Scholar
  60. LOMBARDINI, P. P. (1985) Regional and deep hyperthermia. In Hypertherrnic ontology 1984, Vol. 2. OVERGAARD, J. (Ed.), Taylor & Francis, London, 317–319.Google Scholar
  61. LOU, Z., YANG, W.-J. and SANDHU, T. S. (1988) Numerical analysis of electromagnetic hyperthermia of the human thorax. Med. & Biol. Eng. & Comput., 26, 50–56.Google Scholar
  62. MAGIN, R. L. and PETERSON, A. F. (1989) Noninvasive microwave phased arrays for local hyperthermia: a review. Int. J. Hyperthermia, 5, 429–450.Google Scholar
  63. MATSUDA, J., KATO, K. and SAITOH, Y. (1988) The application of a re-entrant type resonant cavity applicator to deep and concentrated hyperthermia-computer simulations. Jpn. J. Hypertherm. Oncol., 4, 111–118.Google Scholar
  64. MATSUDA, T. (1991) Circumstances and next theme regarding public health insurance adoption of hyperthermia using electromagnetic waves. Ibid., 7, 92–96.Google Scholar
  65. MIZUSHINA, S., XIANG, Y. and SUGIURA, T. (1986) A large waveguide applicator for deep regional hyperthermia. IEEE Trans., MTT-34, 644–648.Google Scholar
  66. MOLLS, M., BAUMHOER, W., FELDMANN, H. J., MUELEER, R. D. and SACK, H. (1988) First results after hyperthermia treatment with the BSD system in Essen. Recent Results Cancer Res., 107, 129–135.Google Scholar
  67. MORITA, N., HAMASAKI, T. and KUMAGAI, N. (1986) An optimal excitation method in multi-applicator systems for forming a hot zone inside the human body. IEEE Trans., MTT-34, 532–538.Google Scholar
  68. NAGATA, Y., HIRAOKA, M., AKUTA, K., Jo, S., NISHIMURA, Y., TAKAHASHI, M., ABE, M., FUKUDA, Y., IMURA, H., MORI, K., YAMAOKA, Y., OZAWA, K. and SONOYAMA, T. (1987) Clinical experiences of thermotherapy for malignant liver tumors. Jpn. J. Hypertherm. Oncol., 3, 183–191.Google Scholar
  69. NAITO, H. (1986) HMS-020 (in Japanese). Gan no Rinsho, 32, 1633–1637.Google Scholar
  70. NAKAJIMA, K., HISAZUMI, H., YAMAMOTO, H. and KOMATSU, K. (1986) A study of regional temperature rise in bladder cancer patients during RF-hyperthermia. Jpn. J. Hypertherm. Oneol., 2, 43–48.Google Scholar
  71. NAKAJIMA, K. and HISAZUMI, H. (1987) Studies of temperature rise in subcutaneous fat tissue during RF-hyperthermia. Ibid., 3, 87–91.Google Scholar
  72. NAKAMURA, N., IKEDA, H., SAKAMOTO, K. and KANAI, H. (1987) New induction method for heating deep-seated tumors. Jpn. J. Med. Electron. Biol. Eng., 25, 114–120.Google Scholar
  73. NIKAWA, Y., KATSUMATA, T., KIKUCHI, M. and MORT, S. (1986) An electric field converging applicator with heating pattern controller for microwave hyperthermia. IEEE Trans., MTT-34, 631–635.Google Scholar
  74. NIKAWA, Y., KIKUCHI, M., TERAKAWA, T. and MATSUDA, T. (1990) Heating system with a lens applicator for 430 MHz microwave hyperthermia. Int. J. Hyperthermia, 6, 671–684.Google Scholar
  75. NISHIMURA, Y., HIRAOKA, U., Jo, S., AKUTA, K., TAKAHASHI, M. and ABE, M. (1985) Clinical results of radiation therapy combined with regional hyperthermia for locally advanced colorectal cancers. In Progress in hyperthermie oncology. EGAWA, S. (Ed.), Shinohara Publishers, Tokyo, 352–353.Google Scholar
  76. OLESON, J. R. and CETAS, T. C. (1982) Hyperthermia by magnetic induction (MI) using a coaxial electrode pair: physical characteristics of the technique. Proc 2nd Ann. Meeting. N. Am. Hyperthermia Group, 21.Google Scholar
  77. OLESON, J. R. and CETAS, T. C. (1983) Hyperthermia by magnetic induction: experimental and theoretical results for coaxial coil pairs. Radiat. Res., 95, 175–186.Google Scholar
  78. OLESON, J. R. and DEWHIRST, M. W. (1983) Hyperthermia: an overview of current progress and problems. Curr. Probl. Cancer, 8,1–62.Google Scholar
  79. PALIWAL, B. R., GIBBS, F. A. and WILEY, A. L. (1982) Heating patterns induced by a 13.56 MHz radiofrequency generator in large phantoms and pig abdomen and thorax. Int. J. Radiat. Oncol. Biol. Phys., 8, 857–864.Google Scholar
  80. PAULSEN, K. D. and Ross, M. P. (1990) Comparison of numerical calculations with phantom experiments and clinical measurements. Int. J. Hyperthermia, 6, 333–349.Google Scholar
  81. RAGANELLA, L., TIBERIO, C. A., BANCI, G., FRANCONI, C. and VANNUCCI, I. (1987) Hyperthermia by combined capacitive and inductive applicators. Proc. 9th Ann. IEEE Conf. Eng. in Med. & Biol. Soc., 3, 1306–1307.Google Scholar
  82. RASMARK, P. and ANDERSEN, J. B. (1984) Electronically steered heating of a cylinder. In Hyperthermic Oncology 1984, Vol. 1. OVERGAARD, J. (Ed.), Taylor & Francis, 617–620.Google Scholar
  83. RUGGERA, P. S. and KANTOR, G. (1984) Development of a family of RF helical coil applicators which produce transversely uniform axially distributed heating in cylindrical fat-muscle phantoms. IEEE Trans., BME-31, 98–106.Google Scholar
  84. SAMULSKI, T. V. (1984) Clinical related applications of microwave and ultrasound hyperthermia phantoms. In Hyperthermia phantoms. Hyperthermia Physics Center, USA, 39–54.Google Scholar
  85. SAMULSKI, T. V., FESSENDEN, P. and MEYER, J. L. (1984) Phantom, animal, and clinical experience with the BSD annular phased array system (abstract). Hyperthermic Oncology 4th Int. Symp., M 10, in poster presentation.Google Scholar
  86. SANDHU, T. S. and KOLOZSVARY, A. J. (1984) Conformal hyperthermia applicators. In Hyperthermic oncology 1984, Vol. 1. OVERCAARD, J. (Ed.), Taylor & Francis, London 675–678.Google Scholar
  87. SANNAZZARI, G. L., GABRIELE, P., ORECCHIA, R., MELANO, A., AUDONE, B. and BOLLA, L. (1986) A computerized system for hyperthermic treatment of cancer: clinical results regarding refractory or recurrent tumors. Rays, 11, 101–108.Google Scholar
  88. SAPOZINK, M. D., GIBBS, F. A., GATES, K. S. and STEWART, J. R. (1984) Regional hyperthermia in the treatment of clinically advanced, deep seated malignancy: results of a pilot study employing an annular array applicator. Int. J. Radiat. Oncol. Biol. Phys., 10, 775–786.Google Scholar
  89. SATHIASEELAN, V., ISKANDER, M. F., HOWARD, G. C. W. and BLEEHEN, N. M. (1986) Theoretical analysis and clinical demonstration of the effect of power pattern control using the annular phased-array hyperthermia system. IEEE Trans., MTT-34, 514–519.Google Scholar
  90. SATO, G., SHIBATA, C., SEKIMUKAI, S., WAKABAYASHI, H., MITSUKA, K. and GIGA, K. (1986) Phase-controlled circular array heating equipment for deep-seated tumors: preliminary experiments. Ibid., MTT-34, 520–526.Google Scholar
  91. SEKIBA, K., HASEGAWA, Z., KOHNO, I., FUJIWARA, K. and KOBASHI, Y. (1985) Hyperthermia in gynecology. The Saishin-Igaku, 40, 2583–2587.Google Scholar
  92. SHIMM, D. S., CETAS, T. C., HYNYNEN, K. H., BUECHEER, D. N., ANHALT, D. P., SYKES, H. F. and CASSADY, J. R. (1989) The CDRH helix A phase I clinical trial. Am. J. Clin. Oncol., 12, 110–113.Google Scholar
  93. SHRIVASTAVA, P. N., SAYLOR, T. K., MATLOUBIEH, A. Y. and PALIWAE, B. R. (1988) Hyperthermia quality assurance results. Int. J. Hyperthermia, 4, 25–37.Google Scholar
  94. SIDI, J., JASMIN, C., CONVERT, G., DUFOUR, J., AZAM, G., HUBER, H. and LEGER, J. (1982) Shortwave regional hyperthermia of the pelvis. Biomed. Thermol., 107, 739–744.Google Scholar
  95. SIDI, J., CONVERT, G., DUFOUR, J., AZAM, G., MABIRE, J. P. and JASMIN, C. (1984) A three electrodes capacitive heating system (Jasmin 3–1000) for the treatment of deep-seated pelvic tumors (abstract). Hyperthermic Oncology 4th Int. Symp., M2.Google Scholar
  96. STERZER, F., PAGLIONE, R. W., MENDECKI, J., FRIEDENTHAL, E. and BOTSTEIN, C. (1980) RF therapy for malignancy. IEEE Spectrum, 17, 32–37.Google Scholar
  97. STORM, F. K., HARRISON, W. H., ELLIOTT, R. S. and MORTON, D. L. (1980) Hyperthermic therapy for human neoplasms: thermal death time. Cancer, 46, 1849–1854.Google Scholar
  98. STORM, F. K., HARRISON, W. H., ELLIOTT, R. S., SILBERMAN, A. W. and MORTON, D. L. (1982) Thermal distribution of magneticloop induction hyperthermia in phantoms and animals: effect of the living state and velocity of heating. Int. J. Radiat. Oncol. Biol. Phys., 8, 865–871.Google Scholar
  99. STORM, F, K., BAKER, H. W., SCANEON, E. F., PLENK, H. P., MEADOWS, P. M., COHEN, S. C., OLSON, C. E., THOMSON, J. W., KHANDEKAR, J. D., ROE, D., NIZZE, A. and MORTON, D. L. (1985) Magnetic-induction hyperthermia. Cancer, 55, 2677–2687.Google Scholar
  100. STROHBEHN, J. W. (1984) Calculation of absorbed power in tissue for various hyperthermia devices. Cancer Res., 44, 4781s-4787s.Google Scholar
  101. SUGAAR, S. and LEVEEN, H. H. (1979) A histopathologic study on the effects of radiofrequency thermotherapy on malignant tumors of the lung. Cancer, 43, 767–783.Google Scholar
  102. SUGIMACHI, K. and HIDENOBU, K. (1985) Hyperthermia for carcinoma of the esophagus. The Saishin-Igaku, 40, 2552–2557.Google Scholar
  103. SUGIYAMA, A., NISHIMURA, Z., SH1MIZU, T., ICHINOHE, K., TESHIMA, T. and KANEKO, M. (1989) Basic study on 13"56 MHz RF capacitive heating system HEH-500C. Jpn. J. Hypertherm. Oncol., 5, 397–408.Google Scholar
  104. TANABE, E., McEuEN, A. and NORRIS, C. S. (1983) A multi-element microstrip antenna for local hyperthermia. IEEE MTT-S Dig., 183–185.Google Scholar
  105. TANAKA, H., KATO, H., NISHIDA, T., KANO, E., SUGAHARA, T. and ISHIDA, T. (1981) Physical basis of RF hyperthermia for cancer therapy (2). Measurement of distribution of absorbed power from radiofrequency exposure in agar phantom. J. Radiat. Res., 22, 101–108.Google Scholar
  106. TIBERIO, C. A., RAGANELLA, L., BANCI, G. and FRANCONI, C. (1988) The RF toroidal transformer as a heat delivery system for regional and focused hyperthermia. IEEE Trans., BME-3fi, 1077–1085.Google Scholar
  107. TSUKIYAMA, I., HASHIDA, I., KAJIURA, Y., AKINE, Y., ONO, R., EGAWA, S. and YANAGAWA, S. (1985) A comparison of deep regional hyperthermia from an annular array and a capacitive heating from Thermotron RF-8. Jpn. Hypertherm. OncoL, 1, 97–101.Google Scholar
  108. TURNER, P. F. and GANOHI, O. P. (1981) Apparatus for electromagnetic radiation of living tissue and the like. United States Patent 4271848.Google Scholar
  109. TURNER, P. F. (1982) An annular phased array for deep regional hyperthermia. Proc. N. Am. Hyperthermia Group 2nd Ann. Meeting, 22.Google Scholar
  110. TURNER, P. F. and KUMAR, L. (1982) Computer solution for applicator heating patterns. Nat. Cancer Inst. Monogr., 61, 521–523.Google Scholar
  111. TURNER, P. F. (1984) Hyperthermia and inhomogeneous tissue effects using an annular phased array. IEEE Trans., MTT-32, 874–882.Google Scholar
  112. TURNER, P. F. (1986a) Mini-annular phased array for limb hyperthermia. Ibid., MTT-34, 508–513.Google Scholar
  113. TURNER, P. F. (1986b) Interstitial equal-phased arrays for EM hyperthermia. Ibid., MTT-34, 572–578.Google Scholar
  114. TURNER, P. F. and SCHAEEERMEYER, T. (1988) Technical aspects of hyperthermia. Recent Results Cancer Research, 107, 76–86.Google Scholar
  115. UOZUMI, H., BABA, Y., YASUNAGA, T. and TAKAHASHI, M. (1987) Clinical evaluation of combined hyperthermia and radiation therapy for radioresistant superficial malignant tumors. Radiat. Med., 5, 121–130.Google Scholar
  116. VAGUINE, V. A. (1984) Physics and performance of Clini-Therm’s hyperthermia systems with multiple heating modalities. Proc. Varian’s Fourth European Clinic Users’ Meeting, 111–120.Google Scholar
  117. VAN PUTTEN, M. H. P. M. and VAN DEN BERG, P. M. (1986) A three-dimensional model for the ‘coaxial TEM’ deep-body hyperthermia applicator. Int. J. Hyperthermia, 2, 243–252.Google Scholar
  118. VAN RHOON, G. C., VISSER, A. G., VAN DEN BERG, P. M. and REINHOLD, H. S. (1984) Temperature depth profiles obtained in muscle-equivalent phantoms using the RCA 27 MHz ridged waveguide. In Hyperthermic oncology 1984, Vol. 1. OVERGAARD, J. (Ed.), Taylor & Francis, London, 499–502.Google Scholar
  119. VAN RHOON, G. C., VISSER, A. G., VAN DEN BERG, P. M. and REINHOLD, H. S. (1988) Evaluation of ring capacitor plates for regional deep beating. Int. J. Hyperthermia, 4, 133–142.Google Scholar
  120. VAN RHOON, G. C., SOWINSKI, M. J., VAN DEN BERG, P. M., VISSER, A. G. and REINHOLD, H. S. (1990) A ring capacitor applicator in hyperthermia: energy distributions in a fat-muscle layered model for different ring electrode configurations. Int. J. Radiat. OncoL BioL Phys., 18, 77–85.Google Scholar
  121. VON ARDENNE, M. (1978) On a new physical principle for selective local hyperthermia of tumor tissues. In Cancer therapy by hyperthermia and radiation. STREFFER, C., VAN BEUNINGEN, D., DIETZEL, F., ROETTiNGER, E., ROBINSON, J. E., SCHERER, E., SEEBER, S. and TROTT, K.-R. (Eds.), Urban & Schwarzenberg, Baltimore, Munich, 96–104.Google Scholar
  122. VRBA, J., MONTECHIA, F., BANCI, G. and FRANCONI, C. (1989) 27 MHz versatile evanescent-mode applicators for superficial and subcutaneous hyperthermia. Proc. 10th Conf. European Soc. for Hyperthermic Oncology, 151.Google Scholar
  123. YAMAZAKI, K. and ISHIVAMA, A. (1989) RF magnetic induction type hyperthermia using a large ferrite core in toroidal shape, having possibility as deep regional heating and selective heating. Jpn. J. Hypertherm. Oncol., 5, 133–140.Google Scholar
  124. YANAGAWA, S., TSUKIYAMA, I., WATAI, K., AKINE, Y. and KAKEHI, M. (1984) Regional hyperthermia combined with radiation for locally advanced deep-seated malignancy. In Hyperthermic oncology 1984. OVERGAARD, J. (Ed.), Taylor & Francis, London, 613–616.Google Scholar
  125. YANAGAWA, S., SONE, Y., DOI, H. and YAMAMOTO, G. (1986) A new procedure prevents surface overheating in deep hyperthermia using RF capacitive heating equipment. In Progress in hyperthermic oncology. EGAWA, S. (Ed.), Shinohara Publishers, Tokyo, 214–215.Google Scholar
  126. ZWAMBORN, A. P. M. and VAN DEN BERG, P. M. (1989) A computational model for heat generation in a radially layered tissue inside a ‘coaxial TEM’ applicator. Int. J. Hyperthermia, 5, 211–223.Google Scholar

Copyright information

© IFMBE 1993

Authors and Affiliations

  • H. Kato
    • 1
    • 2
  • T. Ishida
    • 1
  1. 1.Department of RadiologyShimane Medical UniversityIzumoJapan
  2. 2.Central Research LaboratoriesShimane Medical UniversityIzumoJapan

Personalised recommendations