Letters in Peptide Science

, Volume 8, Issue 3–5, pp 227–233 | Cite as

Biophysical studies of a transmembrane peptide derived from the T cell antigen receptor

  • M. Ali
  • M. R. R. De Planque
  • N. T. Huynh
  • N. Manolios
  • F. Separovic


Core peptide (CP) is a unique peptide derived from the transmembrane sequence of T cell antigen receptor (TCR)-alpha chain and is capable of inhibiting the immune response both invitro and in animal models of T cell mediated inflammation. The structure of CP, with sequence GLRILLLKV, is similar to the amphipathic region of many peptides. Unlike antimicrobial peptides, however, which damage cell membranes, electron microscopy and propidium iodide exclusion assays on cell membranes suggest that CP does not create pores and may act by interfering with signal transduction at the membrane level. To investigate this effect further we report the results of31P and2H solid-state NMR spectroscopy of CP on model membranes. As predicted, even at high concentrations of CP, the structure of model membranes was not significantly perturbed. Only at the very high peptide-to-lipid molar ratio of 1∶10 significant effects on the model membranes were observed. We conclude that CP does not destroy the integrity of the lipid bilayer.

Key words

2H NMR 31P NMR T cell antigen receptor CD lipid bilayer 



circular dichroism


core peptide




3-(N-morpholino) propane sulfonic acid




nuclear magnetic resonance


peripheral Blood Lymphocyte


T cell antigen receptor


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davis, M.M. and Bjorkman, P.J., Nature, 334 (1988) 395.PubMedCrossRefGoogle Scholar
  2. 2.
    Manolios, N., Letourner, F., Bonifacino, J.S. and Klausner, R.D., Eur. Mol. Biol. Org. J., 10 (1991) 1643.Google Scholar
  3. 3.
    Manolios, N., Todays Life Sci., 4 (1992) 32.Google Scholar
  4. 4.
    Manolios, N., Kemp, O. and Li, Z.G., Eur. J. Immunol., 24 (1994) 89.Google Scholar
  5. 5.
    Manolios, N. and Li, Z.G., Immunol. Cell Biol., 73 (1995) 544.PubMedGoogle Scholar
  6. 6.
    Manolios, N., Collier, S., Taylor, J., Pollard, J., Harrison, L. and Bender, V., Nature Medicine, 3 (1997) 84.PubMedCrossRefGoogle Scholar
  7. 7.
    Gollner, G.P., Muller,R., Knop, J. and Enk, A.H., Gene Therapy, 7 (2000) 1000.PubMedCrossRefGoogle Scholar
  8. 8.
    Espand, R.M. and Vogel, H.J., Biochim. Biophys Acta, 1482 (1999) 11.Google Scholar
  9. 9.
    Blondelle, S.E., Lohner, K. and Aguilar, M.I.Biochim. Biophys Acta, 1482 (1999) 89.Google Scholar
  10. 10.
    Matsuzaki, K., Nakamura, A., Murase, O., Sugishita, K., and Mijajima, K., Biochemistry, 36 (1997) 2104.PubMedCrossRefGoogle Scholar
  11. 11.
    Ulmer, H.M., Ganzle, M.G., and Vogel, R.F., Appl. Environ. Microbiol., 66 (2000) 3966.PubMedCrossRefGoogle Scholar
  12. 12.
    Davis, J.H., Jeffrey, K.R., Bloom, M., Valic, M.I., and Higgs, T.P., Chem. Phys. Lett., 42 (1976) 390.CrossRefGoogle Scholar
  13. 13.
    Separovic, F. and Gawrisch, K., Biophys. J., 71 (1996) 274.PubMedCrossRefGoogle Scholar
  14. 14.
    Seelig, J., Biochim. Biophys. Acta, 515 (1978) 105. Seelig, J. Q. Rev. Biophys., 10 (1979) 353.PubMedGoogle Scholar
  15. 15.
    Koenig, B. W., Ferretti, J. A., and Gawrisch, K., Biophys. J., 38 (1999) 6327.Google Scholar
  16. 16.
    De Planque, M.R.R., Goormaghtigh, E., Greathouse, D.V., Koeppe, R.E., II, Kruijtzer, J.A.W., Liskamp, R.M.J., De Kruijff, B. and Killian, J.A., Biochemistry, 40 (2001) 5000.PubMedCrossRefGoogle Scholar
  17. 17.
    Greenfield, N. and Fasman, G.D., Biochemistry, 8 (1969) 4108.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • M. Ali
    • 1
  • M. R. R. De Planque
    • 2
  • N. T. Huynh
    • 1
  • N. Manolios
    • 1
  • F. Separovic
    • 2
  1. 1.Department of RheumatologyWesimead HospitalSydneyAustralia
  2. 2.School of ChemistryUniversity of MelbourneMelbourneAustralia

Personalised recommendations