Cardiac assistance with electrically stimulated skeletal muscle

  • S. F. Badylak
  • L. Stevens
  • W. Janas
  • M. H. Gray
  • L. A. Geddes
  • W. D. VoorheesIII
Biomedical Engineering

Abstract

This study examined the ability of a skeletal muscle-powered assist ventricle (SMV) to augment cardiac output in ten dogs with pharmacologically induced heart failure under acute conditions. An SMV was surgically constructed in each dog by wrapping the untrained rectus abdominis muscle around a compressible pouch that was inserted into a left ventricular apex-to-aortic vascular conduit. The multiple motor nerves to the rectus muscle were then stimulated during ventricular diastole at a rate which equalled a ratio of 1∶2, 1∶3, or 1∶4 with the natural ventricular beat. There was an increased cardiac output during SMV assistance compared with preassistance values in all ten dogs at each stimulation ratio with a mean increase of 46±4 per cent with a ratio of 1∶2, 25±4 per cent with a ratio of 1∶3, and 31±7 per cent with a ratio of 1∶4 (p<0·01 for all values). The diastolic blood pressure and mean blood pressure were both increased (p<0·01 and p<0·05, respectively) during SMV stimulation at ratios of 1∶2 and 1∶3, but not 1∶4. We have shown that untrained rectus abdominis muscle, when used as the power supply for a SMV in an apico-aortic conduit, can temporarily augment cardiac output in dogs with pharmacologically induced heart failure.

Keywords

Dog model Electrical stimulation Skeletal muscle ventricle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acker, M. A., Hammond, R. L., Mannion, J. D., Salmon, S. andStephenson, L. W. (1987) Skeletal muscle as the potential power source for a cardiovascular pump; assessmentin vivo.Science,236, 324–327.Google Scholar
  2. Armenti, F., Bitto, T., Macoviak, J. A., Kelly, A. M., Chase, N., Hoffman, B., Rubinstein, N. A., Sutton, M. S. J., Edmunds, L. H. andStephenson, L. W. (1984) Transformation of canine diaphragm to fatigue-resistant muscle by phrenic nerve stimulation.Surg. Forum,35, 258–260.Google Scholar
  3. Bitto, T., Armenti, F. andHoffman, R. K. (1985) Time course of transformation of dog diaphragm muscle with continuous low frequency stimulation at 10 Hz and 2 Hz. Proc. 2nd Vienna Muscle Symp., 175–179.Google Scholar
  4. Carpentier, A. andChachques, J. C. (1985) Myocardial substitution with a stimulated skeletal muscle: first successful clinical case.Lancet,8440, 1267.CrossRefGoogle Scholar
  5. Franciosa, J. A., Wilen, M., Zuseke, S. andCohm, J. N. (1983) Survival in men with severe chronic left ventricular failure due to either coronary heart disease or idiopathic dilated cardiomyopathy.Am. J. Cardiol.,51, 831–836.CrossRefGoogle Scholar
  6. Guyton, A. C., Jones, C. E. andColeman, T. G. (1973)Circulatory physiology: cardiac output and its regulation, 2nd edn. W. B. Saunders, Philadelphia.Google Scholar
  7. Kantrowitz, A. andMcKinnon, W. M. P. (1959) The experimental use of the diaphragm as an auxiliary myocardium.Surg. Forum,9, 266–268.Google Scholar
  8. Kusaba, E., Schraut, W., Sawatani, S., Jaron, D., Freed, P. andKantrowitz, A. (1973) A diaphragmatic graft for augmenting left ventricular function: a feasibility study.Trans. Am. Soc. Artif. Int. Organs,19, 251–257.Google Scholar
  9. Macoviak, J. A. Stephenson, L. W., Alavi, A., Kelly, A. M. andEdmunds, L. H. (1981a) Effect of electrical stimulation on diaphragmatic muscle used to enlarge right ventricle.Surg.,90, 271–277.Google Scholar
  10. Macoviak, J. A., Stephenson, L. W., Spielman, S., Greenspan, J. A. M., Likoff, M., Sutton, M. S. J., Reichek, N., Rashking, W. J. andEdmunds, L. H. (1981b) Replacement of ventricular myocardium with diaphragmatic skeletal muscle.J. Thorac. Cardiovasc. Surg.,81, 519–527.Google Scholar
  11. Macoviak, J. A., Stephenson, L. W., Armenti, F., Kelly, A. M., Alari, A., Mackler, T., Cox, J., Palatianos, G. andEdmunds, L. H. (1982) Electrical conditioning ofin situ skeletal muscle for replacement of myocardium.J. Surg. Res.,32, 429–439.CrossRefGoogle Scholar
  12. Magovern, G. J., Park, S. B. andMagovern, G. J. Jr. (1986) Latissimus dorsi as a functioning synchronously paced muscle component in the repair of a left ventricular aneurysm.Ann. Thorac. Surg.,41, 116–121.CrossRefGoogle Scholar
  13. Mannion, J. D. andStephenson, L. W. (1985) Potential uses of skeletal muscle for myocardial assistance.Surg. Clinics North Am.,65, 679–687.Google Scholar
  14. Mannion, J. D., Bitto, T., Hammond, R., Rubinstein, N. A. andStephenson, L. W. (1986a) Histochemical and fatigue characteristics of conditioned canine latissimus dorsi muscle.Circ. Res.,58, 298–304.Google Scholar
  15. Mannion, J. D., Hammond, R. andStephenson, L. W. (1986b) Hydraulic pouches of canine latissimus dorsi.J. Thorac. Cardiovasc. Surg.,91, 534–544.Google Scholar
  16. Nakamura, K. andGlenn, W. W. L. (1964) Graft of the diaphragm as a functioning substitute for the myocardium.Surg. Res.,4, 435–439.Google Scholar
  17. Petrovsky, B. V. (1961) The use of diaphragm grafts for plastic operations in thoracic surgery.J. Thorac. Cardiovasc. Surg.,41, 348–355.Google Scholar
  18. Salmons, S. andSreter, F. A. (1967) Significance of impulse activity in the transformation of skeletal muscle type.Nature,263, 30–34.CrossRefGoogle Scholar
  19. Salmons, S. andVrbova, G. (1969) The influence of activity on some contractile characteristics of mammalian fast and slow muscles.J. Physiol.,201, 535–549.Google Scholar
  20. Salmons, S. andHenriksson, J. (1981) The adaptive response of skeletal muscle to increased use.Muscle & Nerve,4, 94–105.CrossRefGoogle Scholar
  21. Solis, E. andKaye, M. P. (1986) The registry of the International Society for Heart Transplantation: third official report, January–February 1986.Heart Transplant,5, (1), 2–5.Google Scholar
  22. Spotnitz, H. M., Merker, C. andMalm, J. R. (1974) Applied physiology of the canine rectus abdominis: force-length curves correlated with functional characteristics of a rectus powered ‘ventricle’. Potential for cardiac assistance.Trans. Am. Soc. Artif. Int. Organs,20, 747–756.Google Scholar
  23. Von Recum, A., Stulc, J. P., Hamada, O., Baba, H. andKantrowitz, A. (1977) Long-term stimulation of a diaphragm muscle pouch.Surg. Res.,23, 422–427.CrossRefGoogle Scholar

Copyright information

© IFMBE 1989

Authors and Affiliations

  • S. F. Badylak
    • 1
  • L. Stevens
    • 2
  • W. Janas
    • 1
  • M. H. Gray
    • 1
  • L. A. Geddes
    • 1
  • W. D. VoorheesIII
    • 1
  1. 1.Hillenbrand Biomedical Engineering CenterPurdue UniversityWest LafayetteUSA
  2. 2.Methodist Hospital of Indianapolis Inc.IndianapolisUSA

Personalised recommendations