Advertisement

Dynamic control of breathing during exercise and hypercapnia

  • Y. Oku
  • K. Chin
  • M. Mishima
  • M. Ohi
  • K. Kuno
  • Y. H. Tamura
Physiological Measurement

Abstract

The dynamic influences of end-tidal CO2 and exercise on ventilation are compared when CO2 and exercise are imposed separately and when they are imposed simultaneously. Five human subjects are studied. The subjects performed three trials: random work rate forcing, random CO2 inhalation and their simultaneous loading. The work rate was varied between 20 and 80 W as a pseudorandom binary sequence. The concentration of inspired CO2 was varied randomly between 0 and 7 per cent, adjusted so that it produced approximately the same amount of ventilatory fluctuations as the random work load. The relative contribution of each variable was analysed using multivariate autoregressive analysis at frequencies ranging from 0·1 to 1 cycle min−1. The results show that the dynamics of the response to CO2 inhalation, exercise and their combination are nonlinear and that the combination of CO2 inhalation and exercise magnifies the nonlinear behaviour. Ventilation is largely unaffected by either work rate or end-tidal CO2 at 1 cycle min−1. During simultaneous CO2 and work rate forcing, ventilation tends to follow the change in the end-tidal CO2.

Keywords

Autoregressive model Dynamic response Exercise Hypercapnia Relative power contribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike, H. (1967) Some problems in the application of the cross-spectral method. InSpectral analysis of time series.Harris, B. (Ed.), John Wiley, New York, 81–107.Google Scholar
  2. Akaike, H. andNakagawa, T. (1972)Statistical analysis and control of dynamic systems. Saiensu-sha, Tokyo, In Japanese, with a computer program package TIMSAC written inFortran IV with English comments.)Google Scholar
  3. Benchitrit, G. andBertrand, F. (1975) A short-term memory in the respiratory centres: statistical analysis.Respir. Physiol.,23, 147–158.CrossRefGoogle Scholar
  4. Bennett, F. M., Reischl, P., Grodins, F. S., Yamashiro, S. M. andFordyce, W. E. (1981) Dynamics of ventilatory response to exercise in humans.J. Appl. Physiol.,51, 194–203.Google Scholar
  5. Bradley, B. L., Mestas, J., Forman, J. andUnger, K. M. (1980) The effect on respiratory drive of a prolonged physical condition program.Am. Rev. Respir. Dis.,122, 741–746.Google Scholar
  6. Casaburi, R., Whipp, B. J., Wasserman, K., Beaver, W. L. andKoyal, S. N. (1977) Ventilatory and gas exchange dynamics in response to sinusoidal work.J. Appl. Physiol.,42, 300–311.Google Scholar
  7. Clark, J. M., Sinclair, R. D. andLenox, J. B. (1980) Chemical and nonchemical components of ventilation during hypercapnic exercise in man.J. Appl. Physiol.,48, 1065–1076.Google Scholar
  8. Daubenspeck, J. A. (1973) Frequency analysis of CO2 regulation: afferent influences on tidal volume control.J. Appl. Physiol.,35, 662–672.Google Scholar
  9. Denison, D., Edwards, R. H. T., Jones, G. andHope, H. (1971) Estimates of the CO2 pressures in systemic arterial blood during rebreathing on exercise.Respir. Physiol.,11, 186–196.CrossRefGoogle Scholar
  10. Duffin, J., Bechbache, R. R., Goode, R. C. andChung, S. A. (1980) The ventilatory response to carbon dioxide in hyperoxic exercise.Respir. Physiol.,40, 93–105.CrossRefGoogle Scholar
  11. Grodins, F. S., Gray, J. S., Schroeder, R., Norins, A. L. andJones, R. W. Respiratory responses to CO2 inhalation. (1954) A theoretical study of a non linear biological regulator.J. Appl. Physiol.,7, 283–308.Google Scholar
  12. Hulsbosch, M. A. M., Binkhorst, R. A. andFolgering, H. T. (1981) Effects of positive and negative exercise on ventilatory CO2 sensitivity.Eur. J. Appl. Physiol. Occup. Physiol.,47, 73–81.CrossRefGoogle Scholar
  13. Kelly, M. A., Owens, G. R. andFishman, A. P. (1982) Hypercapnic ventilation during exercise: effects of exercise methods and inhalation techniques.Respir. Physiol.,50, 75–85.CrossRefGoogle Scholar
  14. Lamarra, N., Whipp, B. J., Ward, S. A. andWasserman, K. (1987) Effect of interbreath fluctuations on characterizing exercise gas exchange kinetics.J. Appl. Physiol.,62, 2003–2012.CrossRefGoogle Scholar
  15. Poon, C. S. andGreen, J. G. (1985) Control of exercise hyperpnea during hypercapnia in humans.J. Appl. Physiol.,59, 792–797.Google Scholar
  16. Sohab, S. andYamashiro, S. M. (1980) Pseudorandom testing of ventilatory response to inspired carbon dioxide in man.J. Appl. Physiol.,49, 1000–1009.Google Scholar
  17. Suyama, A., Sunagawa, K., Hayashida, K., Sugimachi, M., Todaka, K., Nose, Y. andNakamura, M. (1988) Random exercise stress test in diagnosing effort angina.Circulation.,78, 825–830.Google Scholar
  18. Swanson, G. D. andBellville, J. W. (1974) Hypoxic-hypercapnic interaction in human respiratory control.J. Appl. Physiol.,36, 480–487.Google Scholar
  19. Wasserman, K., Whipp, B. J., Koyal, S. N. andBeaver, W. L. (1973) Anaerobic threshold and respiratory gas exchange during exercise.J. Appl. Physiol.,35, 236–243.Google Scholar
  20. Wigertz, O. (1977) Dynamics of ventilation and heart rate response to sinusoidal work load in man.J. Appl. Physiol.,29, 208–218.Google Scholar

Copyright information

© IFMBE 1992

Authors and Affiliations

  • Y. Oku
    • 1
  • K. Chin
    • 1
  • M. Mishima
    • 1
  • M. Ohi
    • 1
  • K. Kuno
    • 1
  • Y. H. Tamura
    • 2
  1. 1.Department of Clinical Pulmonary PhysiologyChest Disease Research InstituteKyotoJapan
  2. 2.Institute of Statistical MathematicsTokyoJapan

Personalised recommendations