Skip to main content
Log in

Conservation and characterisation of spatial features in a new method of data compression for body surface potential maps

  • Computing and Data Processing
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Body surface potential maps consist of a huge amount of data represented as a series of three-dimensional maps, which are time consuming to process and expensive to store. In spite of the continuous interest in body surface potential maps, their use has not become common and they are of no practical use in the clinics. This is due to the overwhelming amount of measured data required to generate the maps and the lack of quantitative methods to analyse them. Data compression or reduction may solve these deficiencies. Such a procedure must conserve the fine spatial details of the maps, which are usually extracted from low level surface potentials, as these are reported to be significant in diagnostic electrocardiography. A technique is presented for data reduction, that implements two-level thresholding and conserves the fine significant spatial features of each map. A sequence of annuli thus produced is shown to describe the dynamic nature of the underlying process. This sequence is further processed and characterised by features which quantify its dynamic behaviour: time of annuli sequence appearance, its duration, three-dimensional loci of centres of mass of the annuli, distances between successive centres of mass and cross-correlation coefficients between successive annuli. To test the data reduction procedure and the usefulness of the features, maps from 20 subjects are studied (both normal patients and those with various pathologies). It is found that the use of annuli instead of the whole measured information allows simple storage, display and calculations; the features, which vary in time, represent closely the changes in location of the annuli and their dynamic variations of shape. The features are also found to be grouped together for the maps of the normal patients and for each pathology Thus, body surface potential maps may become more commonly used in clinics by being represented by a set of features, which conserve their dynamic and spatial nature, and which may serve for classification of cardiac pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, D. andGilat, S. (1992) Classification of pathologies by reduced sequential potential maps.Med. & Biol. Eng. & Comput.,30, 26–31.

    Google Scholar 

  • Committee on ECG of the American Heart Association (1967) Specifications for instruments in electrocardiography and vectorcardiography.Circ. Res.,35, 583–602.

    Google Scholar 

  • Cuffin, D. B. andGeselowitz, B. M. (1977) Studies of the electrocardiogram using realistic cardiac and torso models.IEEE Trans. BME-24, 242–251.

    Google Scholar 

  • DeAmbroggi, L., Bertoni, T., Rabbia, C. andLandolina, M. (1986) Body surface potential maps in old inferior myocardial infarction: assessment of diagnostic criteria.J. Electrocardiol.,19, 225–234.

    Google Scholar 

  • Durrer, D. andSchuilenberg, R. M. (1970) Pre-excitation revisited.Am. J. Cardiol.,25, 690.

    Article  Google Scholar 

  • Einthoven, E., Fahr, G. andDeWaart, A. (1950) On the direction and manifest size of the variations of potential in the human heart and on the influence of the position of the heart on the form of the electrocardiogram.Pfluger's Arch. f. d. ges. physiol.,150, 275–315 (translated byHoff, H. E. andSekelj, P. Amer. Heart J.,40, 163–211).

    Article  Google Scholar 

  • Evans, A. K., Lux, R. L., Burgess, M. J., Wyatt, R. F. andAbildskov, J. A. (1981) Redundancy reduction for improved display and analysis of body surface potential maps. II Temporal compression.Circ. Res.,49, 197–203.

    Google Scholar 

  • Green, L. S., Lux, R. L., Stilli, D., Haws, C. W. andTaccardi, B. (1987) Fine detail in body surface maps: accuracy of maps using limited lead array and spatial and temporal data representation.J. Electrocardiol.,20, 21–26.

    Article  Google Scholar 

  • Groenewengen, A. S., Spekhorst, H. M. andReek, E. J. (1985) A quantitative method for the localization of the ventricular pre-excitation area in the Wolff-Parkinson-White Syndrome using singular value decomposition of body surface potentials.J. Electrocardiol.,18, 157–168.

    Google Scholar 

  • Igarashi, A., Kubota, I., Ikeda, K., Tsuiki, K. andYasui, S. (1987) Determination of the site of myocardial infarction by QRST isointegral mapping in patients with abnormal ventricular activation sequence.Japanese Heart J.,28, 165–176.

    Google Scholar 

  • Ikeda, K., Kawahima, S., Kubota, I., Igarashi, A., Yamaki, M., Yasumura, S., Tsuiki, K. andYasui, S. (1986) Non invasive detection of coronary artery disease by body surface electrocardiographic mapping after dipyridamole infusion.J. Electrocardiol.,19, 213–223.

    Google Scholar 

  • Kamakura, S., Shimomura, K., Ohe, T., Matsuhisa, M. andToyoshima, H. (1986) The role of initial minimum potentials on body surface maps in predicting the site of accessory pathways in patients with Wolff-Parkinson-White Syndrome.Circulation,74, 89–96.

    Google Scholar 

  • Kornreich, F., Holt, J., Rijlant, P., Barnard, A. C. L., Tiberghien, J., Kramer, J. andSnoeck, J. (1976) New ECG techniques in the diagnosis of infarction and hypertrophy. InVectorcardiography. Third edn,Hoffman, I., Hamby, R. I. (Eds.), Elsevier, North Holland, Amsterdam, 171–179.

    Google Scholar 

  • Kornreich, F. andRautaharju, P. M. (1981) The missing wave-form and diagnostic information in the standard 12-lead electrocardiogram.J. Electrocardiol.,14, 341–350.

    Article  Google Scholar 

  • Kornreich, F., Montague, T. J., Rautaharju, P. M., Block, P., Warren, J. W. andHoracek, M. B. (1986) Identification of best electrocardiographic leads for diagnosing anterior and inferior myocardial infarction by statistical analysis of body surface potential maps.Am. J. Cardiol.,58, 863–871.

    Article  Google Scholar 

  • Kubota, I., Ikeda, K., Ohyama, T., Yamaki, M., Kawashima, S., Igarashi, A., Tsuiki, K. andYasui, S. (1985) Body surface distributions of ST segment changes after exercise in effort angina pectoris without myocardial infarction.Am. Heart J.,110, 949–955.

    Article  Google Scholar 

  • Liebman, J., Rudy, Y., Thomas, C., Ko, W., Plonsey, R. andDiaz, P. J. (1984) Body surface potential mapping system reference manual. Dept. Biomed. Eng., Case Western Reserve University, Cleveland, Ohio.

    Google Scholar 

  • Lux, R. L., Smith, C. R., Wyatt, R. F. andAbildskov, J. A. (1978a) Limited lead selection for estimation of body surface potential maps in electrocardiography.IEEE Trans.,BME-25, 270–276.

    Google Scholar 

  • Lux, R. L., Burgess, M. J., Wyatt, R. F., Evans, A. K., Vincent, G. M. andAbildskov, J. A. (1978b) Clinically lead system for improved electrocardiography: Comparison with precordial grids and conventional lead systems.Circulation,59, 356–363.

    Google Scholar 

  • Lux, R. L., Evans, A. K., Burgess, M. J., Wyatt, R. F. andAbildskov, J. A. (1981) Redundancy reduction for improved display and analysis of body surface potential maps. I Spatial compression.Circ. Res.,49, 186–196.

    Google Scholar 

  • Lux, R. L. andGreen, L. S. (1983) Surface potential mapping: a problem in statistical imaging of the heart.IEEE Frontiers and Comput. Health Care, 37–40.

  • Mirvis, D. M. (1985) Ability of standard E.C.G. parameters to detect the body surface isopotential abnormalities of pacing induced myocardial ischemia in the dog.J. Electrocardiol.,18, 77–85.

    Google Scholar 

  • Montague, T. J., Smith, E. R., Johnstone, D. E., Spencer, C. A., Lalond, L. D., Bessoudo, R. M., Gardner, M. J., Anderson, R. M. andHoracek, B. M. (1984) Temporal evolution of body surface maps pattern following acute inferior myocardial infarction.J. Electrocardiol.,17, 319–328.

    Google Scholar 

  • Nikias, C. L., Raghuveer, M. R., Siegel, J. H. andFabian, M. (1986) The zero delay wavenumber spectrum estimation for the analysis of array ECG signals—an alternative to isopotential mapping.IEEE Trans.,BME-33, 435–451.

    Google Scholar 

  • Oosteram, A. V. andCuffin, J. J. M. (1981) Computing the depolarization sequence at the ventricular surface from BSPM. Akademiai Kiado, Budapest.

    Google Scholar 

  • Osugi, J., Ohta, T., Toyama, J., Takatsu, F., Nagaya, T. andYamada, K. (1984) Body surface isopotential maps in old inferior myocardial infarction undetectable by 12 lead electrocardiogram.J. Electrocardiol.,17, 55–62.

    Google Scholar 

  • Pan Huy, H., Gulrajani, R. M., Roberge, F. A., Nadeu, R. A., Mailloux, G. E. andSavard, P. S. (1981) A comparative evaluation of three different approaches for detecting body surface isopotential map abnormalities in patients with myocardial infarction.J. Electrocardiol,14, 43–56.

    Google Scholar 

  • Rudy, Y. andPlonsey, R. (1980) A comparison of volume conductor and source geometry effects on body surface and epicardial potentials.Circ. Res.,46, 283–291.

    Google Scholar 

  • Simoons, M. L. andBlock, P. (1981) Towards the optimal lead system and optimal criteria for exercise electrocardiography.Am. J. Cardiol.,47, 1366–1374.

    Article  Google Scholar 

  • Spach, M. S. andBarr, R. C. (1971) Physiologic correlates and clinical application of isopotential surface maps. inVectorcardiography 2. Hoffman, I., Hamby, R. I., Glassman, E. (Eds), North Holland Publishing, Amsterdam.

    Google Scholar 

  • Spach, M. S., Barr, R. C., Benson, W., Walston, A., Wonen, R. B. andEdwards, S. (1979) Body surface low-level potentials during ventricular repolarization with analysis of the ST segment: Variability in normal subjects.Circulation,59, 822–836.

    Google Scholar 

  • Taccardi, B. (1963) Distribution of heart potentials on the thoracic surface of normal human subjects.Circ. Res.,12, 341–352.

    Google Scholar 

  • Tonooka, I., Kubota, I., Watanabe, Y., Tsuiki, K. andYasui, S. (1983) Isointegral analysis of body surface maps for the assessment of location and size of myocardial infraction.Am. J. Cardiol.,52, 1174–1180.

    Article  Google Scholar 

  • Uijen, G. J. H., Heringa, A. andVan Oosterom, A. (1984) Data reduction of body surface potential maps by means of orthogonal expansion.IEEE Trans. BME-31, 706–714.

    Google Scholar 

  • Van-Dam, R. T. (1987) Present status of the art of body surface mapping. InPediatric and fundamental electrocardiography.Liebman, J., Plonsey, R., Rudy, Y. (Eds.) Martinus Nijhoff Pub., Dordrecht, 347–357.

    Google Scholar 

  • Vincent, G. M., Abildskov, J. A., Burges, M. I., Millar, K., Lux, R. L. andWyatt, R. F. (1977) Diagnosis of old inferior myocardial infarction by body surface isopotential mapping.Am. J. Cardiol.,39, 510–515.

    Article  Google Scholar 

  • Zeevi, Y. Y., Gavrieli, A. andShitz, S. (1987) Image representation by zero and sine wave crossings.J. Opt. Soc. Am.,4, 2045.

    Article  Google Scholar 

  • Zeevi, Y. Y. andRotem, D. (1984) Image reconstruction from zero crossing. Technion, Israel Ins. of Tech., EE publ. no. 499.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilat, S., Adam, D. Conservation and characterisation of spatial features in a new method of data compression for body surface potential maps. Med. Biol. Eng. Comput. 30, 15–25 (1992). https://doi.org/10.1007/BF02446188

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02446188

Keywords

Navigation