Bulletin of Experimental Biology and Medicine

, Volume 121, Issue 1, pp 60–63 | Cite as

Immunological correlation between morphine tolerance and the effect of naloxone in rats of different age

  • L. V. Kalyuzhnyi
  • M. A. Gruden'
  • S. V. Litvinova
  • G. V. Torgovanova
  • E. A. Shumova
Pharmacology and Toxicology


In 3–6-week-old morphine-sensitive rats, in which morphine injection produced an analgetic effect, the serum titer of antimorphine antibodies 24 h postinjection is less than half that observed in morphine-resistant animals. Administration of naloxone to morphine-sensitive rats induces hyperalgesia and considerably raises the serum titer of antimorphine antibodies. Chronic injections of the same dose of morphine, which cause its analgetic effect to disappear, increase the titer of antibodies in morphine-sensitive rats 2-fold. In morphine-resistant rats naloxone produces an analgetic effect followed by its gradual decay and disappearance in the course of chronic administration. Subsequent administration of morphine induces analgesia, raises the titer of antimorphine antibodies, and lowers the titer of antiidiotypic antibodies.

Key Words

morphine tolerance naloxone antimorphine antibodies antiidiotypes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. V. Kalyuzhnyi, A. Yu. Kozlov, and S. V. Litvinova,Byull. Eksp. Biol. Med.,116, No 7, 6–9 (1993).Google Scholar
  2. 2.
    A. I. Kul'berg, In:Immunology [in Russian], Vol. 1, Moscow (1987), pp. 85–87.Google Scholar
  3. 3.
    Enzyme-Mediated Immunoassay. Eds. G. G. Ngo and G. M. Lenhoff, Plenum Press, New York-London (1985).Google Scholar
  4. 4.
    S. I. Tronnikov, N. B. Gamaleya, A. G. Veretinskaya,et al., Byull. Eksp. Biol. Med.,114, No 12, 624–626 (1992).Google Scholar
  5. 5.
    T. Appelboom, V. Maertelaer, E. Prez,et al., Arthritis Rheum.,34, 1048–1051 (1991).PubMedGoogle Scholar
  6. 6.
    D. Gersten and J. Marchalonis,J. Immunol. Methods,24, No 3-4, 305–309 (1978).PubMedCrossRefGoogle Scholar
  7. 7.
    K. Gudehithlu, G. Tejwani, and H. Bhargava,Brain Res.,553, 284–290 (1991).PubMedCrossRefGoogle Scholar
  8. 8.
    H. Hjelm, K. Hjelm, and I. Sjoquistf,FEBS Lett.,28, 73–76 (1972).PubMedCrossRefGoogle Scholar
  9. 9.
    J. Kachur, B. Rosemond, S. Welch,et al., Life Sci.,37, No 26, 2549–2555 (1985).PubMedCrossRefGoogle Scholar
  10. 10.
    A. Killian, C. Schaster, and B. Wainer,J. Pharmacol. Exp. Ther.,217, 820–827 (1981).PubMedGoogle Scholar
  11. 11.
    B. Malfroy, J. Swerts, A. Guyon,et al., Nature,276, 523–526 (1978).PubMedCrossRefGoogle Scholar
  12. 12.
    G. Olson, R. Olson, and A. Kastin,Peptides,7, 907–933 (1986).PubMedCrossRefGoogle Scholar
  13. 13.
    D. Pounder and D. Steward,Can. J. Anaesth.,39, 969–974 (1992).PubMedCrossRefGoogle Scholar
  14. 14.
    C. Takeshigi, M. Murai, C. Luo,et al., Neurosci. Lett.,13, Suppl. 2, 431–432 (1979).Google Scholar
  15. 15.
    B. Wainer, F. Fitch, R. Rothberg,et al., Nature,241, 537–540 (1973).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • L. V. Kalyuzhnyi
    • 1
  • M. A. Gruden'
    • 1
  • S. V. Litvinova
    • 1
  • G. V. Torgovanova
    • 1
  • E. A. Shumova
    • 1
  1. 1.P. K. Anokhin Research Institute of Normal PhysiologyRussian Academy of Medical SciencesMoscow

Personalised recommendations