Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 124, Issue 2, pp 735–738 | Cite as

Effect of asphyxia on adenylate cyclase activity in cat brain cortex

  • E. A. Bolekhan
  • M. O. Samoilov
Physiology
  • 23 Downloads

Abstract

Effect of 1–5-min asphyxia on adenylate cyclase activity in cat brain cortex is studied. Adenylate cyclase activity is measured in cortex specimens obtainedex vivo after 1, 2.5, and 5 min of asphyxia, and 30 and 60 min of reoxygenation by radioassay. Stimulating effects of norepinephrine and NaF on adenylate cyclase activity are assessed. Five-min asphyxia induces phasic changes in adenylate cyclase activity: on the 1st min basal activity of the enzyme increases by 97%, after 2.5 min it returns to the initial level, and increases again by 55% on the 5th min of asphyxia. On the 30th and 60th min of reoxygenation after 2.5- and 5-min asphyxia, basal adenylate cyclase activity does not differ from the initial activity. The stimulating effect of norepinephrine and NaF on enzyme activity is weakened after 5 min of asphyxia and 30 min of reoxygenation after 2.5- and 5-min asphyxia. Even short-term asphyxia affects adenylate cyclase activity and modifies the mechanisms of adrenergic signal transduction in the brain cortex in response to oxygen deficiency and probably to hypercapnia as well as during the early reoxygenation period.

Key Words

asphyxia adenylate cyclase brain cortex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. A. Bolekhan,Byull. Eksp. Biol. Med.,113, No. 2, 227–228 (1992).Google Scholar
  2. 2.
    S. I. Pylova,Neirokhimiya,7, 39–46 (1988).Google Scholar
  3. 3.
    M. O. Samoilov, D. G. Semenov, N. G. Yarantsev, and S. A. Evdokimov,Fiziol. Zh. SSSR,68, 3–8 (1982).PubMedGoogle Scholar
  4. 4.
    N. S. Ahn and M. H. Makman,Brain Res.,38, 125–135 (1977).CrossRefGoogle Scholar
  5. 5.
    R. P. Ebstein, K. Seamon, C. R. Creveling, and J. W. Daly,Cell. Mol. Neurobiol.,2, 179–192 (1982).PubMedCrossRefGoogle Scholar
  6. 6.
    K. Gordon, J. B. Becker, and F. S. Silverstein,J. Neurochem.,54, 605–611 (1990).PubMedGoogle Scholar
  7. 7.
    R. A. Gross and J. A. Ferrendelli,,34, 1309–1318 (1980).PubMedGoogle Scholar
  8. 8.
    B. P. Hughes and G. J. Barritt,Biochem. J.,245, 41–47 (1987).PubMedGoogle Scholar
  9. 9.
    J. W. Lasarewicz, M. O. Samoilov, and D. G. Semenov,Resuscitation,15, 245–255 (1987).CrossRefGoogle Scholar
  10. 10.
    H. G. E. Lloyd, I. Spense, and G. A. R. Johnston,Brain Res.,462, 391–395 (1988).PubMedCrossRefGoogle Scholar
  11. 11.
    M. T. Piasik, P. L. Wisler, C. L. Jonson, and J. D. Potter,J. Biol. Chem.,255, 4176–4181 (1980).Google Scholar
  12. 12.
    J. P. Robinson and D. A. Kendall,J. Neurochem.,52, 690–698 (1989).PubMedGoogle Scholar
  13. 13.
    Y. Salomon, in:Advances in Cyclic Nucleotide Research. G. Brockeret al. (Eds.), Vol. 10, New York (1979), pp. 35–55.Google Scholar
  14. 14.
    H. Shuntoh, K. Taniyama, H. Fukuzaki, and C. Tanaka,J. Neurochem.,51, 1565–1572 (1988).PubMedGoogle Scholar
  15. 15.
    E. Susunni, W. T. Manders, D. R. Knight,et al., Circ. Res.,65, 1145–1150 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • E. A. Bolekhan
    • 1
  • M. O. Samoilov
    • 1
  1. 1.I. P. Pavlov Institute of PhysiologyRussian Academy of SciencesSt. Petersburg

Personalised recommendations