Skip to main content
Log in

Mechanisms compensating for altered resistance to respiration during muscular exercise in man

  • Physiology
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Abstract

Alterations in respiratory parameters following the substitution of a helium-oxygen (He−O2) or sulfur hexafluoride-oxygen (SF6−O2) mixture for air were analyzed during the first 10 respiratory cycles in human volunteers exposed to either of these mixtures for 3 min at rest and during forced respiration. Both at rest and during moderate physical exercise neither the volume of pulrnonary ventilation nor the partial carbon dioxide pressure differed significantly in the subjects breathing air, He−O2, or SF6−O2. When the He−O2 mixture was substituted for air, the forces developed by the inspiratory muscles, the work of breathing, the activity of the parasternal intercostal muscles, and the central inspiratory activity were all reduced, whereas substitution of the SF6−O2 mixture for air led to significant increases in these four parameters. It is concluded that compensatory responses of the respiratory system to altered density of the gaseous medium develop on the basis of the afferent impulse traffic from mechanoreceptors of the lungs and respiratory muscles and also on account of segmental reflexes and intrinsic properties of the muscle fibers themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. S. Breslav and G. G. Isaev,Uspekhi Fiziol. Nauk,22, No 2, 3–18 (1991).

    CAS  Google Scholar 

  2. I. S. Breslav, N. Z. Klyueva, and E. A. Konza,Byull. Eksp. Biol. Med.,89, No 4, 397–400 (1980).

    CAS  Google Scholar 

  3. E. A. Konza,Fiziol. Zh. SSSR,65, No 5, 737–740 (1979).

    Google Scholar 

  4. E. Campbell, E. Agostoni, and D. Newson,The Respiratory Muscles: Mechanics and Neural Control, London (1970).

  5. M. Corda, G. Eklund, and C. Euler,Acta Physiol. Scand.,63, No 3, 391–400 (1965).

    Article  PubMed  CAS  Google Scholar 

  6. A. W. Mattews,Q. J. Med.,6, No 1, 179–196 (1979).

    Google Scholar 

  7. J. Mead,Bull. Europ. Physiopathol. Respir.,15, Suppl., 61–71 (1979).

    Google Scholar 

  8. J. Milic-Emili and J. M. Petit,Arch. Sci. Biol.,43, No 2, 326–330 (1959).

    Google Scholar 

  9. J. Milic-Emili and W. Zin,Handbook of Physiology. Section 3, Vol. 2, Part 2, pp. 751–769 (1986).

    Google Scholar 

  10. T. A. Sears, in:Breathlessness, Oxford (1966), pp. 33–47.

  11. R. Shannon,Hadbook of Physiology. Section 3, Vol 3, Part 2, pp. 431–447 (1986).

    Google Scholar 

  12. R. Shannon, W. T. Shear, A. R. Mercar,et al., Respir. Physiol.,60, No 2, 193–204 (1985).

    Article  PubMed  CAS  Google Scholar 

  13. R. Shannon and F. W. Zechman,Respir. Physiol.,16, No 1, 51–69 (1972).

    Article  PubMed  CAS  Google Scholar 

  14. J. T. Sharp,Lung,157, No 4, 185–199 (1980).

    PubMed  CAS  Google Scholar 

  15. S. M. Yamashiro, J. A. Daubenspeck, T. N. Lauritsen, and F. S. Grodins,J. Appl. Physiol.,38, No 4, 702–709 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated fromByulleten' Eksperimental'noi Biologii i Meditsiny, Vol. 120, No 9, pp. 247–251, September, 1995

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaev, G.G., Segizbaeva, M.O. Mechanisms compensating for altered resistance to respiration during muscular exercise in man. Bull Exp Biol Med 120, 887–891 (1995). https://doi.org/10.1007/BF02445006

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02445006

Key words

Navigation