Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 118, Issue 5, pp 1156–1158 | Cite as

The effect of dialysis membranes on lipid peroxidation in the erythrocytes of patients with terminal renal insufficiency

  • A. A. Kubatiev
  • I. A. Rud'ko
  • T. S. Balashova
  • V. M. Ermolenko
Pathological Physiology and General Pathology
  • 19 Downloads

Abstract

The content of malonic dialdehyde is shown to be significantly increased in the erythrocytes of patients as compared to the control. During hemodialysis using a regenerated cellulose membrane, the level of malonic dialdehyde reliably increased after 30 min of treatment (p<0.05) and dropped to the initial level following 180 min of hemodialysis. The level of membrane malonic dialdehyde on the erythrocytes remained at the pre-dialysis level at the 30th and 180th min of hemodialysis when a polysulfone membrane was used. It may be assumed that the activation of lipid peroxidation is due to the interaction of cells with the dialysis membrane and can be considered as one of the markers of biocompatibility.

Key Words

terminal renal insufficiency erythrocytes dialysis membrane lipid peroxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. S. Balashova, I. A. Rud'ko, V. M. Ermolenko,et al., Ter. Arkh.,6, 66–69 (1992).Google Scholar
  2. 2.
    E. A. Stetsyuk, A. P. Khokhlov, V. N. Sinyukhin,et al., Urol. Nefrol.,4, 47–50 (1989).Google Scholar
  3. 3.
    L. S. Yudanova, E. V. Yakovleva, N. B. Zakharova, and N. N. Cherneva,Ter. Arkh.,6, 63–66 (1992).Google Scholar
  4. 4.
    H. Bauer, H. Brunner, H. Franz, and B. Bultmann,Contrib. Nephrol.,36, 9–14 (1983).PubMedGoogle Scholar
  5. 5.
    M. Bingel, W. Arndt, M. Schulze,et al., Nephron,51, 320–324 (1989).PubMedCrossRefGoogle Scholar
  6. 6.
    A. Dasgupta, S. Hussain, and S. Ahmad,,60, No 1, 56–59 (1992).PubMedGoogle Scholar
  7. 7.
    O. Giardini, M. Taccone-Gallucci, R. Lubrano,et al.,,36, 235–237 (1984).PubMedGoogle Scholar
  8. 8.
    J. R. Hatherill, G. O. Till, and P. A. Ward,Agents Actions,32, No 3/4, 351–358 (1991).PubMedCrossRefGoogle Scholar
  9. 9.
    A. G. Hocken,Nephron,32, 28 (1982).PubMedGoogle Scholar
  10. 10.
    G. Kolb, C. Nolting, I. Eckle,et al.,,57, 64–68 (1991).PubMedGoogle Scholar
  11. 11.
    M. Luciak, and K. Trznadel,Nephrol. Dial. Transplant.,6, Suppl. 3, 66–70 (1991).PubMedGoogle Scholar
  12. 12.
    E. K. Maher, D. G. Wickens, J. F. A. Griffin,et al.,,2, 169–171 (1987).PubMedGoogle Scholar
  13. 13.
    M. Markert, C. Heierli, T. Kuwahara,et al., Clin. Nephrol.,29, 129–136 (1988).PubMedGoogle Scholar
  14. 14.
    P. Thylen, J. Lundahl, E. Fernik,et al., Amer. J. Nephrol.,12, 393–400 (1992).CrossRefGoogle Scholar
  15. 15.
    K. Trznadel, L. Pawlicki, J. Kedrova,et al., Free Radic. Biol. Med.,6, No 4, 393–397 (1989).PubMedCrossRefGoogle Scholar
  16. 16.
    K. Yagi,Biochem. Med.,15, 212–216 (1976).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • A. A. Kubatiev
    • 1
    • 2
  • I. A. Rud'ko
    • 1
    • 2
  • T. S. Balashova
    • 1
    • 2
  • V. M. Ermolenko
    • 1
    • 2
  1. 1.Department of General Pathology and PathophysiologyRussian Medical Academy of Postgraduate EducationMoscow
  2. 2.Department of NephrologyRussian Medical Academy of Postgraduate EducationMoscow

Personalised recommendations