Advertisement

Journal of Neurology

, Volume 243, Issue 2, pp 109–116 | Cite as

Quantitative analysis of the spinal cord motoneuron under chronic compression: an experimental observation in the mouse

  • Hisatoshi Baba
  • Yasuhisa Maezawa
  • Shinichi Imura
  • Norio Kawahara
  • Kenji Nakahashi
  • Katsuro Tomita
Original Communication

Abstract

We investigated quantitative changes in spinal cord motoneurons following chronic compression using a mouse model of cervical cord compression. Twenty-five tiptoe-walking Yoshimura (twy) mice with calcified mass lesions compressing the spinal cord posterolaterally at the C1–C2 vertebral levels were compared with five Institute of Cancer Research (ICR) mice that served as controls. Spinal cord motoneurons in the anterior grey horn between the C1 and C3 spinal cord segments were Nissl-stained and counted topographically and then analysed in relation to the extent of spinal cord compression. The number of motoneurons in C1–C3 spinal cord segments decreased significantly with a linear correlation with the transverse area of the spinal cord when the cord was compressed to 50–70% of control values. A significant reduction in the number of motoneurons occurred at the C2–C3 spinal cord segment compressed at the C1–C2 vertebral level. In contrast, at the level rostral to the C1 vertebra, the number of motoneurons increased significantly in proportion to the magnitude of compression. The current study demonstrates that a number of neurons, morphologically consistent with anterior horn cells, were observed at a rostral site absolutely free of external compression where no such cells normally exist.

Key words

Spinal cord compression Motoneuron Topography Nissl stain Tiptoe-walking Yoshimura (twy) mouse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baba H, Furusawa N, Imura S, Kawahara N, Tsuchiya H, Tomita K (1993) Late radiographic findings after anterior cervical fusion for spondylotic myeloradiculopathy. Spine 18: 2167–2173PubMedGoogle Scholar
  2. 2.
    Baba H, Kawahara N, Tomita K, Imura S (1993) Spinal cord evoked potentials in cervical and thoracic myelopathy. Int Orthop 17: 82–86PubMedGoogle Scholar
  3. 3.
    Baba H, Maezawa Y, Kawahara N, Tomita K, Furusawa N, Imura S (1993) Calcium crystal deposition in the ligamentum flavum of the cervical spine. Spine 18: 2174–2181PubMedGoogle Scholar
  4. 4.
    Baba H, Furusawa N, Tanaka Y, Wada M, Imura S, Tomita K (1994) Anterior decompression and fusion for cervical myeloradiculopathy secondary to ossification of the posterior longitudinal ligament. Int Orthop 18: 204–209PubMedGoogle Scholar
  5. 5.
    Baba H, Furusawa N, Chen Q, Imura S (1995) Cervical laminoplasty in patients with ossification of the posterior longitudinal ligaments. Paraplegia 33: 25–29PubMedGoogle Scholar
  6. 6.
    Baba H, Imura S, Kawahara N, Nagata S, Tomita K (1995) Osteoplastic laminoplasty for cervical myeloradiculopathy secondary to ossification of the posterior longitudinal ligament. Int Orthop 19: 40–45PubMedGoogle Scholar
  7. 7.
    Benzel EC, Lancon JA, Thomas MM, Beal JA, Hoffpauir GM, Kesterson L (1990) A new rat spinal cord injury model: a ventral compression technique. J Spinal Disord 3: 334–338PubMedGoogle Scholar
  8. 8.
    Berghausen EJ, Balogh K, Landis WJ, Lee DD, Wright AM (1987) Cervical myelopathy attributable to pseudogout. Case report with radiologic, histologic, and crystallographic observations. Clin Orthop 214: 217–221PubMedGoogle Scholar
  9. 9.
    Brichta AM, Callister BJ, Peterson EH (1987) Quantitative analysis of cervical musculature in rats: histochemical composition and motor pool organization. I. Muscles and the spinal accessory complex. J Comp Neurol 255: 351–368PubMedCrossRefGoogle Scholar
  10. 10.
    Fujiwara K, Yonenobu K, Hiroshima K, Ebara S, Yamashita K, Ono K (1988) Morphometry of the cervical spinal cord and its relation to pathology in cases with compression myelopathy. Spine 13: 1212–1216PubMedGoogle Scholar
  11. 11.
    Fujiwara K, Yonenobu K, Ebara S, Yamashita K, Ono K (1989) The prognosis of surgery for cervical compression myelopathy: an analysis of the factors involved. J Bone Joint Surg 71B: 393–398Google Scholar
  12. 12.
    Fukushima T, Ikata T, Taoka Y, Takata S (1991) Magnetic resonance imaging study on spinal cord plasticity in patients with cervical compression myelopathy. Spine 16 [Suppl]: S534-S538PubMedGoogle Scholar
  13. 13.
    Hankey G, Khangure MS (1988) Cervical myelopathy due to calcification of the ligamentum flavum. Aust N Z J Surg 58: 247–249PubMedGoogle Scholar
  14. 14.
    Hashizume Y, Iijima S, Hirano A (1983) Pencil-shaped softening of the spinal cord. Acta Neuropathol (Berl) 61: 219–224CrossRefGoogle Scholar
  15. 15.
    Hashizume Y, Iijima S, Kishimoto H, Yanagi T (1984) Pathology of spinal cord lesions caused by ossification of the posterior longitudinal ligament. Acta Neuropathol (Berl) 63: 123–130CrossRefGoogle Scholar
  16. 16.
    Hatayama A, Kaneda K, Sato S, Abumi K, Ohshio I, Nagashima K, Oguma T (1992) Clinical review of poor results for myelopathy caused by ossification of the posterior longitudinal ligament. In: Kurokawa T (ed) Investigation Committee Report on the Ossification of the Spinal Ligaments. Japanese Ministry of Public Health and Welfare, Tokyo, pp 107–111Google Scholar
  17. 17.
    Hosoda Y, Yoshimura Y, Higaki S (1981) A new breed mouse showing multiple osteochondral lesions: the twy mouse. Ryumachi (Tokyo) 21: 157–164Google Scholar
  18. 18.
    Hukuda S, Wilson CB (1972) Experimental cervical myelopathy: effect of compression and ischemia on the canine cervical cord. J Neurosurg 37: 631–652PubMedCrossRefGoogle Scholar
  19. 19.
    Imai S, Hukuda S (1994) Cervical radiculomyelopathy due to deposition of calcium pyrophosphate dihydrate crystals in the ligamentum flavum: historical and histological evaluation of attendant inflammation. J Spinal Disord 7: 513–517PubMedGoogle Scholar
  20. 20.
    Kameyama T, Hashizume Y, Ando T, Takahashi A (1994) Morphometry of the normal cadaveric cervical spinal cord. Spine 19: 2077–2081PubMedGoogle Scholar
  21. 21.
    Kataoka O, Minami H, Sumi M, Tsukuda M, Yokoyama H, Hino T, Kuroda Y, Iio H (1992) Magnetic resonance imaging of ossification of the posterior longitudinal ligament. In: Kurokawa T (ed) Investigation Committee Report on the Ossification of the Spinal Ligaments. Japanese Ministry of Public Health and Welfare, Tokyo, pp 93–99Google Scholar
  22. 22.
    Kitamura S, Sakai A (1982) A study on the localization of the sternocleidomastoid and trapezius motoneurons in the rat by means of the HRP method. Anat Rec 202: 527–536PubMedCrossRefGoogle Scholar
  23. 23.
    Kitamura S, Sakai A, Nishiguchi T (1980) A cytoarchitectonic study of the calcification of the ventral horn cell groups in the rat cervical spinal cord. J Osaka Univ Dent Sch 25: 186–202Google Scholar
  24. 24.
    Kojimahara K, Sugiura H, Kanai Y, Kameyama K, Hosoda Y, Shibata T, Ogawa Y (1992) Vertebral and spinal cord lesions of mice with genetic osteochondral abnormalities (twy mouse). In: Kurokawa T (ed) Investigation Committee Report on the Ossification of the Spinal Ligaments. Japanese Ministry of Public Health and Welfare, Tokyo, pp 46–50Google Scholar
  25. 25.
    Martin D, Schoenen J, Delrée P, Gilson V, Rogister B, Leprince P, Stevenaert A, Moonen G (1992) Experimental acute traumatic injury of adult rat spinal cord by a subdural inflatable baloon: methodology, behavioral analysis, and histopathology. J Neurosci Res 32: 539–550PubMedCrossRefGoogle Scholar
  26. 26.
    McAfee PC, Regan JJ, Bohlman HH (1987) Cervical cord compression from ossification of the posterior longitudinal ligament in non-orientals. J Bone Joint Surg 69 [Br]: 569–575Google Scholar
  27. 27.
    McClung JR, Castro AJ (1978) Rexed’s laminar scheme as it applies to the rat cervical spinal cord. Exp Neurol 58: 145–148PubMedCrossRefGoogle Scholar
  28. 28.
    Miyamoto S, Takaoka K, Yonenobu K, Ono K (1992) Ossification of the ligamentum flavum induced by bone morphogenetic protein. J Bone Joint Surg 74B: 279–283Google Scholar
  29. 29.
    Miyasaka K, Kaneda K, Sato S (1983) Myelopathy due to ossification or calcification of the ligamentum flavum: radiologic and histologic evaluation. Am J Neuroradiol 4: 629–632PubMedGoogle Scholar
  30. 30.
    Mizuno J, Nakagawa H, Iwata K, Hashizume Y (1992) Pathology of spinal cord lesions caused by ossification of the posterior longitudinal ligament, with special reference to reversibility of the spinal cord lesion. Neurol Res 14: 312–314PubMedGoogle Scholar
  31. 31.
    Nishiguchi T, Kitamura S, Okubo J, Ogata K, Sakai A (1986) Location of rabbit spinal accessory nucleus: a study by means of the HRP method. J Osaka Univ Dent Sch 26: 51–58PubMedGoogle Scholar
  32. 32.
    Okada Y, Ikata T, Yamada H, Sakamoto R, Kato S (1993) Magnetic resonance imaging study of the results of surgery for cervical compressive myelopathy. Spine 18: 2024–2029PubMedGoogle Scholar
  33. 33.
    Ono K, Ota H, Tada K, Hamada H, Takaoka K (1977) Ossified posterior longitudinal ligament: a clinicopathologic study. Spine 2: 126–138CrossRefGoogle Scholar
  34. 34.
    Rapoport S (1978) Location of stern-ocleidomastoid and trapezius motoneurons in the rat. Brain Res 156: 339–344PubMedCrossRefGoogle Scholar
  35. 35.
    Saito H, Mimatsu K, Sato K, Hashizume Y (1992) Histopathologic and morphometric study of spinal cord lesion in a chronic cord compression model using bone morphogenetic protein in rabbits. Spine 17: 1368–1374PubMedGoogle Scholar
  36. 36.
    Sherman JL, Nassaux PY, Citrin CM (1990) Measurements of the normal cervical spinal cord on MR imaing. Am J Neuroradiol 11: 369–372PubMedGoogle Scholar
  37. 37.
    Steiner TJ, Turner LM (1972) Cytoarchitecture of the rat spinal cord. J Physiol (Lond) 222: 123–124Google Scholar
  38. 38.
    Sypert GW, Arpin-Sypert EJ (1993) Ossification of the posterior longitudinal ligament. In: Whitecloud TS III, Dunsker SB (eds) Anterior cervical spine surgery, Raven Press, New York, pp 105–118Google Scholar
  39. 39.
    Thijssen HOM, Keyser A, Horstink MWM, Meijer E (1979) Morphology of the cervical spinal cord on computed myelography. Neuroradiology 18: 57–62PubMedCrossRefGoogle Scholar
  40. 40.
    Tomita K, Nomura S, Umeda S, Baba H (1988) Cervical laminoplasty to enlarge the spinal canal in multilevel ossification of the posterior longitudinal ligament with myelopathy. Arch Orthop Trauma Surg 107: 148–153PubMedCrossRefGoogle Scholar
  41. 41.
    Yamada M, Yoshizawa H, Kobayashi S, Shibayama T, Ukai T, Nakagawa M, Fujiwara Y, Morita C (1992) Fine structure of the twy mouse spinal cord. In: Kurokawa T (ed) Investigation Committee Report on the Ossification of the Spinal Ligaments. Japanese Ministry of Public Health and Welfare. Tokyo, pp 46–50Google Scholar
  42. 42.
    Yamazaki M, Moriya H, Goto S, Saito S, Arai K, Nagai Y (1991) Increased type XI collagen expression in the spinal hyperostotic mouse (TWY/TWY). Calcif Tissue Int 48: 182–189Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Hisatoshi Baba
    • 1
  • Yasuhisa Maezawa
    • 1
  • Shinichi Imura
    • 1
  • Norio Kawahara
    • 2
  • Kenji Nakahashi
    • 2
  • Katsuro Tomita
    • 2
  1. 1.Department of Orthopaedic SurgeryFukui Medical SchoolMatsuoka, FukuiJapan
  2. 2.Department of Orthopaedic Surgery, School of MedicineKanazawa UniversityKanazawaJapan

Personalised recommendations