Letters in Peptide Science

, 10:51 | Cite as

Synthesis of peptides employing 9-fluorenylmethyl chloroformate as a coupling agent

  • Subramanyam J. Tantry
  • Ganga-Ramu Vasanthakumar
  • Vommina V. Suresh Babu
Article
  • 60 Downloads

Summary

The synthesis of peptides employing 9-fluorenylmethyl chloroformate (Fmoc-Cl) as a coupling agent has been described. The method is simple, efficient and rapid. All the peptides have been obtained in good yield (70–95%). Furthermore, both the1H NMR and the HPLC studies on Fmoc-Phg-Phe-OMe and Fmoc-D-Phg-Phe-OMe revealed that the coupling is free from racemization.

Key Words

9-fluorenylmethyl chloroformate mixed anhydride method N,O-bis-trimethylsilyl-amino acids peptide acids racemization free coupling 

References

  1. 1.
    Fields G.B., Methods in Enzymology, Solid Phase Peptide Synthesis, Academic Press, San Diego, (1997), Vol. 289.Google Scholar
  2. 2.
    Lloyd-Williams, P., Albericio, F. and Giralt, B., Chemical Approaches to the Synthesis of Peptides and Proteins, CRC Press, New York, (1997).Google Scholar
  3. 3.
    Bodanskzy, M. and Bodanskzy, A., The Practice of Peptide Synthesis, Springer-Verlag, Berlin, (1984).Google Scholar
  4. 4.
    Gross, E. and Meinhofer, J., The Peptides, Analysis, Synthesis, Biology, Academic Press, New York, (1999), Vol. I.Google Scholar
  5. 5.
    Benoiton, N.L. Houben-Weyl Methods of Organic Chemistry, Synthesis of Peptides and Peptidomimities, E. Goodman, A. Felix, L. Moroder and C. Toniolo (eds), New York, E22a (2002) 443.Google Scholar
  6. 6.
    Sheehan, J.C. and Frankenfeld, J.W., J. Org. Chem., 27 (1962) 628.Google Scholar
  7. 7.
    Konig, W. and Geiger, R., Ber. dt Chem. Ges., 103 (1970) 788.Google Scholar
  8. 8.
    Carpino, L.A., J. Am. Chem., Soc., 115 (1993) 4397.CrossRefGoogle Scholar
  9. 9.
    Albericio, F., Chinchilla, R., Dodsworth, D.J. and Najera, C., Org. Prep. Proc. Int., 33 (2001) 203.CrossRefGoogle Scholar
  10. 10.
    Castro, B., Dormoy, J.R. Evin, G. and Selve, C., Tetrahedron Lett., (1975) 1219.Google Scholar
  11. 11.
    Bernasconi, S., Comini, A. Corbella, A., Gariboldi, P. and Sisti, M., Synthesis, (1980) 385.Google Scholar
  12. 12.
    Yunlong, P., Lowe, C., Sailer, M. and Vederas, J.C., J. Org. Chem., 59 (1994) 3642.CrossRefGoogle Scholar
  13. 13.
    Mickelson, J.W., Belonga, K.L. and Jacobsen, E.J., J. Org. Chem., 60 (1995) 4177.CrossRefGoogle Scholar
  14. 14.
    Bernstein, P.R., Krell, R.D., Synder, D.W. and Yee, Y.K., Tetrahedron Lett., 26 (1985) 1951.CrossRefGoogle Scholar
  15. 15.
    Kozikowski, A.P., Neiduzak, T.R. and Springer, J.P., Tetrahedron Lett., 27 (1986) 819.CrossRefGoogle Scholar
  16. 16.
    Bodurow, C.C., Boyer, B.D., Brennan, J., Bunnell, C.A., Burks, J.E., Carr, M.A., Doecke, C.W., Eckrich, T.M., Fisher, J.W., Gardner, J.P., Graves, B.J., Hines, P., Hoying, R.C., Jackson, B.G., Kinncik, M.D., Kochert, C.D., Lewis, J.S., Luke, W.D., Moore, L.L., Morin, J.M., Nist, R.L., Prather, D.E., Sparks, D.L. and Vladuchick, W.C., Tetrahedron Lett., 30 (1989) 2321.CrossRefGoogle Scholar
  17. 17.
    Merette, S.A.M., Burd, A.P. and Deadman, J.J., Tetrahedron Lett., 40 (1999) 753.CrossRefGoogle Scholar
  18. 18.
    Carpino, L.A. and Han, G.Y., J. Am. Chem. Soc., 92 (1970) 5748.CrossRefGoogle Scholar
  19. 19.
    Carpino, L.A. and Han, G.Y., J. Org. Chem., 37 (1972) 3404.CrossRefGoogle Scholar
  20. 20.
    Carpino, L.A., Acc. Chem. Res., 20 (1987) 401.CrossRefGoogle Scholar
  21. 21.
    Seela, F. and Wenzel, T., Helv. Chem. Acta., 75 (1992) 1111.CrossRefGoogle Scholar
  22. 22.
    Carpino, L.A., J. Org. Chem., 53 (1988) 875.CrossRefGoogle Scholar
  23. 23.
    1H NMR for Fmoc-Phg-Phe-OMe; (δ, ppm in CDCl3): 3.0 (2H, d), 3.6 (3H, s), 4.2 (IH, t), 4.4 (2H, d), 4.8 (1H, m), 5.2 (1H, br), 6.1 (2H, m), 7.0–7.8 (18H, ArH). Fmoc-D-Phg-Phe-OMe; (δ, ppm in CDCl3): 2.9 (2H, d), 3.7 (3H, s), 4.2 (1H, t), 4.4 (2H, d), 4.8 (1H, m), 5.2 (1H, br), 6.1 (1H, br), 6.2 (1H, br), 7.0–7.8 (18H, ArH).Google Scholar
  24. 24.
    The HPLC analysis was carried out using Shimadzu CLASS-VP V6.1, HPLC system employing the mobile phase: acetonitrile: water: 60:40; flow rate: 1.5 mL min−1; Column: Lichrospher RP-18, 250×4.0 mm; monitoring at 215 nm. Fmoc-Phg-Phe-OMe (Rt value 14.65 min), Fmoc-D-Phg-Phe-OMe (Rt value 15.39 min).Google Scholar
  25. 25.
    Fmoc-Cl (258 mg, l mmol) HCl.H2N-Phe-OMe (215 mg, 1 mmol) and zinc dust (200 mg) was stirred in THF (5 mL) for 15 min at nt. to obtain Fmoc-Phe-OMe (350 mg, 87%) as white solid. M.p. 125-28°C; Rt value: 12.71 min;1H NMR (δ, ppm in CDCl3): 3.0 (2H, d), 3.6 (3H, s), 4.2 (1H, t), 4.4 (2H, d), 4.7 (1H, t), 6.1 (1H, d), 7.0–7.8 (13H, ArH).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Subramanyam J. Tantry
    • 1
  • Ganga-Ramu Vasanthakumar
    • 1
  • Vommina V. Suresh Babu
    • 1
  1. 1.Department of Studies in Chemistry, Central College CampusBangalore UniversityBangaloreIndia

Personalised recommendations