Advertisement

Letters in Peptide Science

, Volume 5, Issue 5–6, pp 387–389 | Cite as

New proctolin analogues: Synthesis and biological investigation in insects

  • Mariola Kuczer
  • Grzegorz Rosiński
  • Jonathan Issberner
  • Richard Osborne
  • Danuta Konopińska
Article
  • 21 Downloads

Summary

We have extended our work on structure/activity relationship studies of the neuropeptiden proctolin (H-Arg-Tyr-Leu-Pro-Thr-OH) by evaluating the effects of the following proctolin analogues: H-X1-Tyr-Leu-Pro-Thr-OH, where X1=d-Arg(I),N-Me-Arg (II), Can (III), Orn(di-Me) (IV), Orn (iPr) (V), Lys(N, N-di-Me) (VI), Lys(iPr) (VII), Lys(Nic) (VIII) andd-Lys(Nic) (IX). In analogues I–IX, the N-terminal Arg residue was replaced by basic amino acid derivatives with peptides containing amino acid residues with an isosteric system on the back side chain relative to Arg (compounds III, V and VI) orhomo-Arg (compound VII). Analogues I–IX were evaluated for myotropic activity on thein vitro heart preparation ofTenebrio molitor, whereas peptides II, V, and VII–IX were tested for contractile activity on the isolated foregut of locustSchistocerca gregaria. Peptide II and III showed full cardiotropic activity inT. molitor while peptides V and VII showed 40% and 15%, respectively, locust-gut contracting activity of proctolin.

Key words

insect neuropeptide proctolin myotropic effects in insects proctolin and its analogues synthesis of proctolin analogues 

Abbreviations: The symbols of the amino acids, peptides and their derivatives are in accordance with the 1983 Recommendation of the IUPAC-IUB Joint Commision on Biochemical Nomenclature (Eur. J. Biochem. 13 (1984) 9

Arg

l-arginine

Can

l-canavanine

iPr

isopropyl

Leu

l-leucine

Lys

l-lysine

Me

methyl

Nic

nicotinyl

Orn

l-ornitine

Pro

l-proline

Thr

l-threonine

Tyr

l-tyrosine

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Starratt, A.N. and Brown, B.E., Biochem. Biophys. Res. Commun., 90 (1979) 1125.PubMedGoogle Scholar
  2. 2.
    Sullivan, R.E. and Newcomb, R.W., Peptides, 3 (1982) 337.PubMedCrossRefGoogle Scholar
  3. 3.
    Konopińska, D., Rosiński, G., Lesicki, A., Sujak, P., Sobótka, W. and Bartosz-Bechowski, H., Int. J. Pept. Protein Res., 31 (1988) 463.CrossRefGoogle Scholar
  4. 4.
    Konopińska, D., Bartosz-Bechowski, H., Rosiński, G., Lesicki, A., Sujak, P. and Sobótka, W., Int. J. Pept. Protein Res., 35 (1990) 12.PubMedCrossRefGoogle Scholar
  5. 5.
    Lange, A.B., Orchard, I. and Konopińska, D., J. Insect Physiol., 39 (1993) 347.CrossRefGoogle Scholar
  6. 6.
    Rosiński, G. and Gäde, G., J. Insect Physiol., 33 (1988) 451.Google Scholar
  7. 7.
    Gray, A.S., Osborne, R.H. and Jewess, P.J., J. Insect Physiol., 40 (1994) 595.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Mariola Kuczer
    • 1
  • Grzegorz Rosiński
    • 2
  • Jonathan Issberner
    • 3
  • Richard Osborne
    • 3
  • Danuta Konopińska
    • 1
  1. 1.Faculty of ChemistryUniversity of WrocławWrocławPoland
  2. 2.Department of Animal PhysiologyA Mickiewicz UniversityPoznańPoland
  3. 3.University of the West of EnglandBristolU.K.

Personalised recommendations