Mathematical model of arterial stenosis

  • N. Padmanabhan
Article

Abstract

A mathematical model for pulsatile flow in a partially occluded tube is presented. The problem has applications in studying the effects of blood flow characteristics on atherosclerotic development. The model brings out the importance of the pulsatility of blood flow on separation and the stress distribution. The results obtained show fairly good agreement with the available experimental results.

Keywords

Atherosclerosis Biomechanics Blood flow Modelling Stenosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Back, L. D., Radbill, J. R. andCranford, D. A. (1977) Analysis of pulsatile viscous blood flow through diseased coronary arteries of man.J. Biomech.,10, 339–353.CrossRefGoogle Scholar
  2. Caro, C. G., Fitz-Gerald, J. M. andShroeter, R. C. (1969) Arterial wall shear and distribution of early atheroma in man.Nature,233, 1159–1161.CrossRefGoogle Scholar
  3. Caro, C. G., Fitz-Gerald, J. M. andShroeter, R. C. (1971) Aterial wall shear and distribution of early atheroma in man.Proc. R. Soc. Sect. B,117, 109–159.CrossRefGoogle Scholar
  4. Clarkson, T. B. (1964)Atherosclerosis: spontaneous and induced in advances in lipid research (Ed.Paoletti, R. andKritchevsky, D.),1, 211–252.Google Scholar
  5. Forrester, J. H. andYoung, D. F. (1970) Flow through a converging-diverging tube and its applications in occlusive vascular disease—I.J. Biomech.,3, 297–306.CrossRefGoogle Scholar
  6. Forrester, J. H. andYoung, D. F. (1970) Flow through a converging-diverging tube and its applications in occlusive vascular disease—II.J. Biomech.,3, 307–316.CrossRefGoogle Scholar
  7. Fry, D. L. (1968) Acute vascular endothelial changes associated with increased blood velocity gradient.Circ. Res.,22, 165–197.Google Scholar
  8. Fry, D. L. (1969) Certain histological and clinical responses for the vascular interface to acutely induced mechanical stress in the artery of the dog.Circ. Res.,24, 93–108.Google Scholar
  9. Fung, Y. C., Perrone, N. andAnliker, M. (1971)Biomechanics—its foundations and objectives, Prentice Hall Inc., Englewood Cliffs, New Jersey.Google Scholar
  10. Lightfoot, E. N. (1974)Transport phenomena and living systems, John Wiley and Sons, New York.Google Scholar
  11. Lee, J. S. andFung, Y. C. (1970) Flow in locally constricted tube at low Reynolds numbers.J. Appl. Mechs., Trans ASME,37, 9–16.MATHGoogle Scholar
  12. Manton, M. J. (1971) Low Reynolds number flow in slowly varying axisymmetric tubes.J. Fluid Mech.,49, 451–457.MATHCrossRefGoogle Scholar
  13. McDonald, D. S. (1974)Blood flow in arteries, Edwin Arnold, London.Google Scholar
  14. Mitchell, J. R. A. andSchwartz, C. J. (1968)Arterial disease, Oxford, Blackwell.Google Scholar
  15. Mustard, J. F., Rowsell, H. C., Murphy, E. A. andDownie, H. G. (1967) Evolution of atherosclerotic plaques (Ed.Jones, R. J., University of Chicago Press.Google Scholar
  16. O'Brien, V., Ehrlich, L. W. andFriedman, H. H. (1970) Unsteady flow in a branch.J. Fluid Mech.,75, 315–329.CrossRefGoogle Scholar
  17. Schneck, D. J. andOstrach, S. (1975) Pulsatile blood flow in a channel of small exponential divergence—1. The linear approximation for low mean Reynolds number.J. Fluid Eng., Trans. ASME,16, 353–360.Google Scholar
  18. Texon, M. (1963) The role of vascular dynamics in the development of atherosclerosis. InAtherosclerosis and its origin (Ed.Sandler, M. andBourne, G. H.), Academic Press, New York.Google Scholar
  19. Young, D. F. (1968) Effect of a time dependent stenosis on flow through a tube.J. Eng. for Industry, Trans. ASME,90, 248–254.Google Scholar
  20. Young, D. F. andTsai, F. Y. (1973) Flow characteristics in models of arterial stenosis: I steady flow.J. Biomech.,6, 395–410.CrossRefGoogle Scholar
  21. Young, D. F. andTsai, F. Y. (1973) Flow characteristics in models of arterial stenosis: II unsteady flow.J. Biomech.,6, 547–559.CrossRefGoogle Scholar

Copyright information

© IFMBE 1980

Authors and Affiliations

  • N. Padmanabhan
    • 1
  1. 1.Department of Applied MathematicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations