Properties of implant alloys for artificial hip joints

  • M. Semlitsch
  • H. G. Willert
Biomaterials Supplement


Because the requirements demanded from implant materials for artificial hip joints are extremely high, only a very few materials are suitable for this purpose. The metallic materials standardised by the ISO still predominantly include cobalt-based alloys, in cast form for wear-resistant ball heads and in forged form for fracture-resistant anchorage stems. Forged titanium-based alloys have been also used for some years for highly stressed femoral component stems. Both alloy types exhibit a higher resistance to pitting, crevice and galvanic corrosion, stress-corrosion cracking and corrosion fatigue than wrought stainless steel of relatively low strength properties. For this reason, the inadequate material strength of hip prostheses made of the latter material is compensated for by a larger cross-section of the prosthetic stem, this depending on the geometric conditions of the femur. The decision for the selection of the implant material should be made by the orthopaedic surgeon on the basis of his clinical experience, and it should not be influeced by price considerations at the expense of the quality.

Key words

Artificial hip joint Chemical composition Corrosion behaviour Iron cobalt and titanium based implant alloys 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Dockal, C. (1972) Corrosion behaviour of implantation materials for artificial joints.Sulzer Technical Review, Res. No., 14–18.Google Scholar
  2. Graham, A. H. (1969) Strengthening of multiphase alloys during aging at elevated temperatures.Trans. ASM,62, 930–935.Google Scholar
  3. Graham, A. H. andYoungblood, J. L. (1970) Workstrengthening by a deformation induced phase transformation in multiphase alloys.Metallurgical Trans.,1, 413–430.Google Scholar
  4. ISO, TC-150, SC-1, WG-3 (1975) Corrosion fatigue testing of hip joint endoprostheses. SNV-Draft Proposal, No. CH-1/18.Google Scholar
  5. Kesh, A. K. andKummer, F. J. (1978) New manufacturing and processing techniques for the fabrication of cobalt-chromium surgical implants.Transactions 24th Annual ORS, Dallas/Texas, 311.Google Scholar
  6. Lorenz, M., Semlitsch, M., Panic, B., Weber, H. andWillert, H. G. (1978) Fatigue strength of cobalt-base alloys with high corrosion resistance for artificial hip joints.Eng. Med.,7, 241–250.Google Scholar
  7. Luckey, H. A. andBarnard, L. J. (1978) Improved properties of CoCrMo alloy by hot isostatic pressing of powder.Transactions 24th Annual ORS, Dallas/Texas, 296.Google Scholar
  8. Rose, R. M. (1971) Corrosion testing of total hip prostheses and of dissimilar combination of 316 stainless steel, vitallium (HS-21), wrought vitallium (HS-25), wrought commercial grade Ti (RMI-50) and wrought Ti-6A1-4V (RMI-64). Massachusetts Institute of Technology, internal report.Google Scholar
  9. Semlitsch, M. (1971) Metals and plastics for artificial hip joints, investigations of surfaces in the scanning electron microscope.Sulzer Technical Review, Res. No., 1–14.Google Scholar
  10. Semlitsch, M. (1972) Implant metals for plates, screws and artificial joints in bone surgery.Sulzer Technical Review,54, 245–255.Google Scholar
  11. Semlitsch, M. (1976) Technical progress in artificial hip joints. InTotal hip prosthesis,Gschwend, N. andDebrunner, H. U., Hans Huber Publishers, Bern, Stuttgart, Vienna, 256–278.Google Scholar
  12. Semlitsch, M. andWillert, H. G. (1976) Cast and wrought cobalt base alloys as implant materials.Medizinisch-Orthopädische Technik,96, 86–90.Google Scholar
  13. Semlitsch, M. (1976) Metallurgical and clinical experience with cast and forged cobalt-chromium base implant metals of compound construction for artificial joint endoprostheses. InReconstruction surgery and traumatology,Chapchal, C., Karger Verlag, Basel, München, Paris, London, New York, Sydney, 82–101.Google Scholar
  14. Semlitsch, M. (1979) Eigenschaften der CoNiCrMo-Schmiedelegierung Protasul-10 für Gelenkendoprothesen mit klinischer Anwendung seit 1971.Swiss Med.,1, 15–21.Google Scholar
  15. Smith, C. J. E. andHughes, A. N. (1977) The influence of frequency and cold work on the fatigue strength of 316 stainless steel in air and 0·17 M saline. UK Atomic Weapons Research Establishment, Aldermaston, England, Report number AWRE/44/83/189.Google Scholar
  16. Suery, P. (1975) Untersuchungen zum Korrosionsverhalten gegossener und geschmiedeter Implantat-Werkstoffe.Werkstoffe und Korrosion,26, 278–287.CrossRefGoogle Scholar
  17. Suery, P. (1976) Korrosionseigenschaften gegossener und geschmiedeter Werkstoffe für künstliche Gelenke.Medita,6, 19–24.Google Scholar
  18. Suery, P. (1977) Corrosion behaviour for cast and forged implant materials for artificial joints, particularly with respect to compound design.Corrosion Science,17, 155–169.CrossRefGoogle Scholar
  19. Suery, P. (1978) Corrosion behaviour of cast and forged Cobalt-based alloys for double-alloy joint endopros-theses.J. Biomed. Mater., Research 12, 723–741.CrossRefGoogle Scholar
  20. Swanson, S. A. V., Freeman, M. A. R., Vernon-Roberts, B. andWeightman, B. (1977)The scientific basis of joint replacement—properties of materials. Pitman Medical Publishing Co. Ltd., 1–17.Google Scholar
  21. Thull, R. andSchaldach, M. (1976) Corrosion of highly stressed orthopaedic joint replacements. InEngineering in medicine: advances in artificial hip and knee joint technology, Springer Verlag, Berlin, Heidelberg, New York, 242–256.Google Scholar
  22. Ungethuem, M. (1978)Technologische und biomechanische Aspekte der Hüft-und Kniealloarthroplastik. Verlag Hans Huber, Bern, Stuttgart, Wien, 1–136.Google Scholar
  23. Wheeler, K. R. andJames, L. A. (1971) Fatigue behaviour of type 316 stainless steel under simulated body conditions.J. Biomed. Mater., Research 5, 267–281.CrossRefGoogle Scholar
  24. Zichner, L. andWillert, H. G. (1977) Clinical experience with Mueller total hip endoprostheses with stems made of wrought CoNiCrMoTi alloy Protasul-10. Transactions of 3rd Annual Meeting, Society for Biomaterials, New Orleans/USA, paper 93, 98.Google Scholar

Copyright information

© IFMBE 1980

Authors and Affiliations

  • M. Semlitsch
    • 1
  • H. G. Willert
    • 2
  1. 1.Research and Development Dept.Sulzer Brothers Ltd.WinterthurSwitzerland
  2. 2.Orthopaedic University ClinicGőttingenFederal Republic of Germany

Personalised recommendations