Advertisement

Interactive processors for the analysis and modelling of biological rhythms

  • B. L. Bardakjian
  • S. K. Sarna
Article

Abstract

An interactive processor for the analysis of biological rhythms, utilising multistage decimating i.i.r. filters, tuneable multistage lowpass, highpass and bandpass i.i.r. filters, tuneable multistage lowpass, highpass and bandpass i.i.r. filters along with forward and inverse discrete Fourier transforms, is presented. The processor is organised in such a way as to allow tailoring of the processor to fit a particular requirement; this is achieved through a computer-user dialogue. Furthermore, an interactive processor for the modelling of biological rhythms by populations of coupled nonlinear oscillators, where each oscillator can be selectively stimulated, is presented. Two examples are given to illustrate the application of the processor to analyse human colonic electrical control activity and to illustrate the main features of the modelling processor.

Keywords

Biological rhythms Interactive analysis processor Interactive modelling processor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandler, J. W. andBardakjian, B. L. (1973) Leastpth optimisation of recursive digital filters.IEEE Trans.,AU-21, 460–470.Google Scholar
  2. Bardakjian, B. L. andSarna, S. K. (1977) Interactive modules for simulation of coupled biological oscillators.Proc. IEEE Int. Conf. on Cybernetics and Society, Washington, D.C., 465–467.Google Scholar
  3. Bardakjian, B. L. (1978) Program listings of interactive processors for analysis and modelling of biological rhythms. Internal Report in Biomedical Engineering. Hamilton, Canada: McMaster University,BME-4,Google Scholar
  4. Bardakjian, B. L. andSarna, S. K. (1980) An efficient processor for multistage decimation and filtering.IEEE Trans. Acoust., Speech, Signal Processing, February.Google Scholar
  5. Sasar, E. andEroglu, C. (1976) Spectral analysis of spontaneous activity in smooth muscles.In Bulbring, E. andShuba, M. F.,Physiology of Smooth Muscle, Raven Press, New York, 137–146.Google Scholar
  6. Christiansen, J. (1970) Numerical solution of ordinary simultaneous differential equations of the first-order using a method of automatic step change.Numer. Math.,14, 317–324.MATHCrossRefGoogle Scholar
  7. Constantinides, A. G. (1970) Spectral transformations for digital filters.Proc. IEEE,117, (8), 1585–1590.Google Scholar
  8. Fletcher, R. (1970) A new approach to variable metric algorithms.Comput. J.,13, 317–322.MATHCrossRefGoogle Scholar
  9. Linkens, D. A. andCannell, A. E. (1974) Interactive graphics analysis of gastrointestinal electrical signals.IEEE Trans.,BME-21, 335–339.Google Scholar
  10. Pavlidis, T. (1973)Biological oscillators: their mathematical analysis, Academic Press, New York, 29–48.Google Scholar
  11. Rabiner, L. R. andGold B. (1975)Theory and applications of digital signal processing, Prentice-Hall.Google Scholar
  12. Sarna, S. K., Daniel, E. E. andKingma, Y. J. (1971) Simulation of slow wave electrical activity of the small intestine.Am. J. Physiol.,221, 166–175.Google Scholar
  13. Sarna, S. K., Daniel, E. E. andKingma, Y. J. (1972) Simulation of the electric control activity of the stomach by an array of relaxation oscillators.Am. J. Digest. Dis.,17, 299–310.CrossRefGoogle Scholar
  14. Sarna, S. K. (1975) Gastrointestinal electrical activity: terminology.Gastroenterology,68, 1631–1635.Google Scholar

Copyright information

© IFMBE 1980

Authors and Affiliations

  • B. L. Bardakjian
    • 1
  • S. K. Sarna
    • 1
  1. 1.Department of Electrical EngineeringMcMaster UniversityHamiltonCanada

Personalised recommendations