Skip to main content
Log in

Blood oxygenation in coiled silicone-rubber tubes of complex geometry

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Oxygen transfer to blood and water was investigated experimentally for steady flow in a ‘complex coil’, a silicone-rubber tube formed into a sequence of helical coil sections of alternating orientation. The series of reorientations caused the secondary flow induced by the helical motion to be continually re-established, so that mixing of the liquid was enhanced. Complex coils of various configurations were tested in an oxygen atmosphere and a significant improvement of the oxygen-transfer to the liquids was measured while the pressure drop increased moderately. The case of ideal oxygen transfer, i.e. a perfectly mixed fluid, was treated theoretically and a comparison of these results with the experimental data demonstrated how much the fluid-side resistance was reduced by complex coiling.

Sommaire

Le passage de l’oxygène dans le sang et dans l’eau fut étudié de façon expérimentale pour un débit constant dans une ‘spirale complexe’, tube en caoutchouc de silicone constitué d’une série de sections hélicoìdales à orientation alternée. La série de réorientations provoquait le rétablissement continu du flux secondaire induit par le mouvement hélicoìdal, de manière à accroître le mélange du liquide. Des spirales complexes de diverses configurations furent soumises à des essais dans une atmosphère d’oxygène et une amélioration significative du passage de l’oxygène dans les liquides fut mesurée alors que la chute de pression s’intensifiait modérément. Le cas d’un transfert idéal d’oxygène—par example dans un liquide parfaitement mélangé—fut traité de façon théorique et une comparaison de ces résultats avec les données expérimentales a demontré à quel point la résistance latérale du liquide était réduite par le système de spirales complexes.

Zusammenfassung

Sauerstoffübertragung an Blut und Wasser wurde experimentell für stetige Strömung in einer ‘komplexen Spule’ untersucht, einem Silikonkautschukrohr, das in eine Folge von Wendelspulen alternativer Orientierung geformt wurde. Die Reihe von Wieder-Orientierungen verursachte die fortgesetzte Wiederherstellung des von der Spiralbewegung induzierten Sekundärstromes, so daß die Mischung der Flüssigkeit gefördert wurde. Komplexe Spulen verschiedener Konfiguration wurden in einer Sauerstoffatmophäre geprüft und es wurde eine beträchtliche Verbesserung der Sauerstoffübertragung an die Flüssigkeiten gemessen, während der Druckanfall ein wenig anstieg. Der Fall der idealen Sauerstoffübertragung-d.h. an eine vollkommen gemischte Flüssigkeit- wurde theoretisch behandelt und ein Vergleich dieser Resultate mit den experimentellen Daten zeigte, um wieviel der Widerstand von Seiten der Flüssigkeit durch komplexe Spulung verringert wurde.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

internal tube radius, cm

a 1,a 2,a 3 :

coefficients of the modified Hill equation (eqn. 5)

c :

concentration, mole/cm3

c s :

amount of oxygen per unit blood volume bound to haemoglobin at full saturation (s=1), cm3 (s.t.p.)/100 ml blood or mole/cm3

d :

internal tube diameter, cm

d h :

hydraulic diameter = (4-times area)/circumference), cm

D :

coil diameter, cm

De :

Re√(d/D), Dean number

D m :

oxygen diffusivity in the membrane, cm2/s

f :

Δp(d/L)/(v 2 g/2), friction factor

f s :

64/Re, friction factor for laminar flow in straight tubes

G :

4(αD) m /(αD) wb , dimensionless membrane permeability

Hb :

total haemoglobin concentration of the blood = (g haemoglobin)/(100 ml blood),g%

L :

tube length, cm

P :

(p−p 0)/(p g p 0), dimensionless partial pressure of oxygen

P f :

dimensionless partial pressureP in the ideally mixed fluid

p :

partial pressure (of oxygen), mmHg

p co 2 :

partial pressure of carbon dioxide mmHg

p o2 :

partial pressure of oxygen, mmHg

p g :

gas-side partial pressure of oxygen, mmHg

p o :

inlet oxygen partial pressure of the fluid, mmHg

p 1 :

outlet oxygen partial pressure of the fluid, mmHg

Δp :

static pressure drop along the tube axis, mmHg

pH:

standard measure for the concentration of free hydrogen ions

Q :

flow rate, ml/min

R :

r/a, dimensionless radial co-ordinate

r :

radial co-ordinate, cm

Re :

vd/v=2a v/v, Reynolds number

s :

degree of oxygen saturation of blood haemoglobin (0≤s≤1)

Sc :

(v/D o2) wb , Schmidt number for oxygen diffusion in whole blood (=wb)

T :

temperature, deg C

v :

mean velocity, cm/s

W :

w/a, dimensionless wall thickness

w :

wall thickness, cm

Z :

(z/a) G/(Re Sc), dimensionless axial co-ordinate

z :

axial co-ordinate, cm

D) m :

membrane oxygen-permeability, mole/(s cm mmHg)

α f :

effective oxygen-solubility of the fluid, for blood, α f is defined by eqn. 4, mole/(cm3 mmHg)

α f *:

α f wb , dimensionless effective oxygen solubility for whole blood

α m :

membrane oxygen solubility, mole/(cm3 mmHg)

α wb :

oxygen solubility of the whole blood, including plasma and red cells, mole/(cm3 mmHg)

ν:

kinematic viscosity, cm2/s

References

  • Altman, D. L. (1971)Respiration and circulation. Biological Handbook, Federation of American Societies for Experimental Biology

  • Baurmeister, U. (1974) Oxygen transport to blood flowing in coiled semipermeable tubes. M.Sc. thesis, Univ. of Toronto

  • Bischoff, K. B. andT. M. Regan (1971) Comments on diffusion in membrane-limited blood oxygenators.Amer. Inst. Chem. Eng. J. 17, 225

    Google Scholar 

  • Blackshear, P. L. Jun. (1972) Mechanical haemolysis in flowing blood. In:Biomechanics, its foundations and objectives. Eds.Y. C. Fung, N. Perrone andM. Anliker, 501. Prentice Hall, New Jersey

    Google Scholar 

  • Buckles, R. G., E. W. Merrill andE. R. Gilliland (1967) An analysis of oxygen absorption in a tubular membrane oxygenator.Amer. Inst. Chem. Eng. J. 14, 703

    Google Scholar 

  • Dean, W. R. (1928) The streamline flow of fluid in a curved pipe.Phil. Mag. 4, 673

    Google Scholar 

  • Dorson, W. J. Jun.,Larsen, K. G., Elgas, R. J. andVoorhees, M. E. (1971) Oxygen transfer to blood data and theory.Trans. Am. Soc. Artif. Intern. Organs 17, 309

    Google Scholar 

  • Dravid, A. N., Smith, K. A., Merrill, E. W. andBrian, P. L. T. (1971) Effect of secondary fluid motion on laminar flow heat transfer in helically-coiled tubes.Amer. Inst. Chem. Eng. J. 17, 1114

    Google Scholar 

  • Drinker, P. A. (1972) Progress in membrane oxygenator design.Anaesthesiology 37, 242

    Google Scholar 

  • Kalb, C. E. andSaeder, I. D. (1974) Fully developed viscous-flow heat transfer in circular tubes with uniform wall temperature.Amer. Inst. Chem. Eng. J. 20, 340

    Google Scholar 

  • Lee, W. H., Krummhaar, D., Derry, G., Sachs, D., Lawrence, S. H., Clowes, G. H. A. andMaloney, J. V. (1961) Comparison of the effects of membrane and non-membrane oxygenators on the biochemical and biophysical characteristics of blood.Surg. Forum 12, 200

    Google Scholar 

  • Madras, P. A., Morton, W. A. andPetscheck, H. E. (1971) Dynamics of thrombus formation.Fed. Proc. 30, 1665

    Google Scholar 

  • Mockros, L. F. andWeissman, M. H. (1971) The artificial lung. In:Biomedical engineering. Eds.L. H. U. Brown, J. E. Jacobs andL. Stark, 325. F. A. Davis Co., Philadelphia

    Google Scholar 

  • Peirce, E. C. II (1972) The role of the artificial lung in the treatment of respiratory insufficiency: A perspective.Chest 62, 107 S

    Google Scholar 

  • Richardson, P. D. (1971) Effects of secondary flow in augmenting gas transfer in blood. In:Advances in cardiology vol. 6. Eds.R. H. Bartlett, P. A. Drinker andP. M. Galetti, 2, S. Karger, Basel

    Google Scholar 

  • Rossing, R. G. andCain, S. M. (1966) Dog oxyhaemoglobin dissociation curve.J. Appl. Physiol. 21, 198

    Google Scholar 

  • Weissman, M. H. (1969) Diffusion in membrane-limited blood oxygenators.Amer. Inst. Chem. Eng. J. 15, 627

    Google Scholar 

  • Weissman, M. H. andMockros, L. F. (1969) Oxygen and carbon dioxide transfer in membrane oxygenators.Med. & Biol. Eng. 7, 169

    Google Scholar 

  • White, C. M. (1929) Streamline flow through curved pipes.Proc. Roy. Soc. 123A, 645

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baurmeister, U., James, D.F. & Zingg, W. Blood oxygenation in coiled silicone-rubber tubes of complex geometry. Med. Biol. Eng. Comput. 15, 106–117 (1977). https://doi.org/10.1007/BF02442953

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02442953

Keywords

Navigation