Estimation of the conduction velocity of muscle action potentials using phase and impulse response function techniques

  • I. W. Hunter
  • R. E. Kearney
  • L. A. Jones
Computing and Data Processing


Two new techniques are described for calculating the conduction velocity of action potentials in muscle fibres from surface EMG recordings in human subjects. In the first method the conduction velocity is determined from the impulse response function calculated from the two EMG signals. The peak of this function onsists of a single peak located at the delay between the signals. The velocity probability density distribution is then estimated from this impulse response function. The mode of this distribution occurred at 5 m s−1. The second technique uses the phase part of the frequency response function relating the two EMG signals to determine the conduction velocity. These two new approaches overcome some of the limitations associated with estimating conduction velocity from the maximum absolute value of the cross-correlation function, and provide additional information about the conduction velocity.


Cross-correlation Electromyography Impulse response function Muscle action potential conduction velocity Velocity distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bendat, J. S. andPiersol, A. G. (1980)Engineering applications of correlation and spectral analysis. Wiley.Google Scholar
  2. Begey, G. E., Squires, R. D. andSipple, W. C. (1971) Electrocardiogram recording with pasteless electrodes.IEEE Trans.,BME-18, 206–211.Google Scholar
  3. Bigland-Ritchie, B., Donovan, E. F. andRoussos, C. S. (1981) Conduction velocity and EMG power spectrum changes in fatigue of sustained maximal efforts.J. Appl. Physiol.,51, 1300–1305.Google Scholar
  4. Boyd, D. C., Lawrence, P. D. andBratty, P. J. A. (1978) On modeling the single motor unit action potential.IEEE Trans.,BME-25, 236–242.Google Scholar
  5. Broman, H., Bilotto, G. andDe Luca, C. J. (1985) A note on the noninvasive estimation of muscle fiber conduction velocity.,BME-32, 341–344.Google Scholar
  6. Buchthal, F., Guld, C. andRosenfalck, P. (1955) Propagation velocity in electrically activated muscle fibres in man.Acta Physiol. Scand.,34, 75–89.CrossRefGoogle Scholar
  7. de Luca, C. J. (1985) Myoelectrical manifestations of localized muscular fatigue in humans.CRC Crit. Rev. Biomed. Eng.,11, 251–279.Google Scholar
  8. Graham, A. J., Hudgins, B. S. andParker, P. A. (1984) Polarity correlator for conduction velocity measurement.IEEE Trans.,BME-31, 675–679.Google Scholar
  9. Hunter, I. W. andKearney, R. E. (1983) Two-sided linear filter identification.Med. & Biol. Eng. & Comput.,21, 203–209.Google Scholar
  10. Hunter, I. W. andKearney, R. E. (1984) NEXUS: a computer language for physiological systems and signal analysis.comput. Biol. Med.,14, 385–401.CrossRefGoogle Scholar
  11. Kadefors, R., Kaiser, E. andPetersen, I. (1968) Dynamic spectrum analysis of myo-potentials with special reference to muscle fatigue.Electromyog. Clin. Neurophysiol.,8, 39–74.Google Scholar
  12. Lee, H. C. andMilsum, J. H. (1971) Statistical analysis of multiunit multipath neural communication,Math. Biosc.,11, 181–202.MATHCrossRefGoogle Scholar
  13. Levinson, N. (1947) The Wiener RMS (root mean square) error criterion in filter design and prediction.J. Math. Phys.,25, 261–278.MathSciNetGoogle Scholar
  14. Lindstrom, L., Magnusson, R. andPetersen, I. (1970) Muscular fatigue and action potential conduction velocity changes studied with frquency analysis of EMG signals.Electromyography,4, 341–356.Google Scholar
  15. Lynn, P. A. (1979) Direct on-line estimation of muscle fiber conduction velocity by surface electromyography.IEEE Trans.,BME-26, 564–571.Google Scholar
  16. Lynn, P. A., Bettles, N. D., Hughes, A. D. andJohnson, S. W. (1978) Influences of electrode geometry on bipolar recordings of the surface electromyogram.Med. & Biol. Eng. & Comput.,16, 651–660.Google Scholar
  17. Merletti, R., Sabbahi, M. A. andDe Luca, C. J. (1984) Median frequency of the myoelectric signal.Eur. J. Appl. Physiol.,52, 258–265.CrossRefGoogle Scholar
  18. Milner-brown, H. S. andStein, R. B. (1975) The relation between the surface electromyogram and muscular force.J. Physiol.,246, 549–569.Google Scholar
  19. Naeije, M. andZorn, H. (1982) Relation between EMG power spectrum shifts and muscle fibre action potential conduction velocity changes during local muscular fatigue in man.Eur. J. Appl. Physiol.,50, 23–33.CrossRefGoogle Scholar
  20. Naeije, M. andZorn, H. (1983) Estimation of the action potential conduction velocity in human skeletal muscle using the surface EMG cross-correlation technique.Electromyogr. Clin. Neurophysiol.,23, 73–80.Google Scholar
  21. Nishizono, H., Saito, Y. andMiyashita, M. (1979) The estimation of conduction velocity in human skeletal muscle in situ with surface electrodes.Electroenceph. Clin. neurophysiol.,46, 659–664.CrossRefGoogle Scholar
  22. Parker, P. A. andScott, R. N. (1973) Statistics of the myoelectric signal from monopolar and bipolar electrodes.Med. & Biol. Eng.,11, 591–596.Google Scholar
  23. Petrofsky, J. S. (1982)Isometric exercise and its clinical implications. C. C. Thomas.Google Scholar
  24. Petrofsky, J. S. andLind, A. R. (1980) Frequency analysis of the surface electromyogram during sustained isometric contractions.Eur. J. Appl. Physiol.,43, 173–182.CrossRefGoogle Scholar
  25. Robinson, E. A. (1978)Multichannel time series analysis with digital computer programs. Holden-Day, San Francisco.Google Scholar
  26. Sadoyama, T., Masuda, T. andMiyano, H. (1983) Relationships between muscle fibre conduction velocity and frequency parameters of surface EMG during sustained contraction.Eur. J. Appl. Physiol.,51, 247–256.CrossRefGoogle Scholar
  27. Stalberg, E. (1966) Propagation velocity in human muscle fibres in situ.Acta Physiol. Scand.,70, suppl. 287.Google Scholar
  28. Stulen, F. B. andDe Luca, C. J. (1981) Frequency parameters of the myoelectric signal as a measure of muscle conduction velocity.IEEE Trans. BME-28, 515–523.Google Scholar
  29. Williams, W.-J. (1972) Transfer characteristics of dispersive nerve bundles.,SMC-2, 72–85.Google Scholar
  30. Zohar, S. (1967) Toeplitz matrix inversion: the algorithm of W. F. Trench.J. Ass. Comput. Mach.,16, 592–601.MathSciNetGoogle Scholar
  31. Zohar, S. (1979) Fortran subroutines for the solution of toeplitz sets of linear equations.IEEE Trans.,ASSP-27, 656–658.MathSciNetGoogle Scholar
  32. Zorn, H. andNaeije, M. (1983) Online muscle fibre action potential conduction velocity measurements using the surface EMG cross-correlation technique.Med. & Biol. Eng. & Comput.,21, 239–240.Google Scholar

Copyright information

© IFMBE 1987

Authors and Affiliations

  • I. W. Hunter
    • 1
  • R. E. Kearney
    • 1
  • L. A. Jones
    • 2
  1. 1.Biomedical Engineering Unit, Department of PhysiologyMcGill UniversityMontrealCanada
  2. 2.Department of Neurology and neurosurgeryMcGill UniversityMontrealCanada

Personalised recommendations