Linear and nonlinear properties of platinum electrode polarisation. Part 1: frequency dependence at very low frequencies

  • B. Onaral
  • H. P. Schwan


The polarisation impedance of the platinum electrode was measured in physiological saline (0·9% NaCl) over six decades of frequencies down to 1 mHz. The applicability, of Fricke’s phase angle rule was verified down to 10 mHz. The resistive shunt which emerges at lower frequencies was shown to be equivalent to the direct current (d.c.) impedance of the interface. A Cole-Cole (1941) type of relaxation model is proposed to describe the interface behaviour over all frequency ranges. Nonlinear polarisation measurments have demonstrated the validity of Schwan’s limit law of linearity at very low frequencies.


Electrode polarisation Platinum electrodes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almasi, J. J., Hart, M. W. andSchmitt, O. H. (1968) On-line measurement of biological impedance at very low frequencies.Biophys. J.,8, A45.Google Scholar
  2. Almasi, J. J. andSchmitt, O. H. (1974) Automated measurement of bioelectric impedance at very low frequencies.Comp. Biomed. Res.,7, 449.CrossRefGoogle Scholar
  3. Armstrong, R. D., Bell, M. F. andMetcalfe, A. A. (1977) A method for automatic impedance measurement and analysis.J. Electroanal. Chem.,77, 287.Google Scholar
  4. Bockris, J. O’M., Gileadi, E. andMüller, K. (1966) Dielectric relaxation in the electric double layer.J. Chem. Phys. 44, 1, 1445.CrossRefGoogle Scholar
  5. Boer, R. W. de andvan Oosterom, A. (1978) Electrical properties of platinum electrodes: impedance measurements and time domain analysis.Med. & Biol. Eng. & Comput.,16, 1–10.Google Scholar
  6. Burbank, D. P. andWebster, J. G. (1978) Reducing skin potential motion artefact by skin abrasion.Med. & Biol. Eng. & Comput.,16, 31–38.Google Scholar
  7. Cole, K. S. andCole, R. H. (1941) Dispersion and absorption in dielectrics. I. Alternating current characteristics.J. Chem. Phys.,9, 341.CrossRefGoogle Scholar
  8. Daniel, V. V. (1967)Dielectric relaxation. Academic Press, New York, London.Google Scholar
  9. Dymond, A. (1976) Characteristics of the metal-tissue interface of stimulation electrodes.IEEE Trans.,BME23, 4, 274.Google Scholar
  10. Epelboin, I., Gabrielli, C. andLestrade, J. C. (1970) Etude et réalization d’un potentiostat destiné aux mesures d’impédance électrochimique entre 10−5 et 50 kHz.Revue Générale de l’Electricité,79, 669.Google Scholar
  11. Epelboin, I., Keddam, M. andLestrade, J. C. (1973) Faradaic impedances and intermediates in electrochemical reactions.Faraday Discuss. Chem. Soc.,56, 264.CrossRefGoogle Scholar
  12. Fricke, H. (1932) The theory of electrolytic polarisation.Philo. Mag.,14, 310.Google Scholar
  13. Gabrielli, C. andKeddam, M. (1974) Progrès récent dans la mesure des impédances electrochimiques en régime sinusoidal.Electrochimica Acta,19, 355.CrossRefGoogle Scholar
  14. Gabrielli, C., Ksouri, M. andWiart, R. (1977) Compensation de la chute ohmique par une méthode analogique. Application a la mesure des impédances electrochimiques et à la détermination des courbes de polarization.Electrochimica Acta,22, 255.CrossRefGoogle Scholar
  15. Geddes, L. A., da Costa, C. P. andWise, G. (1971) The impedance of stainless-steel electrodes.Med. & Biol. Eng.,9, 511.Google Scholar
  16. Grahame, D. C. (1946) Properties of the electrical double layer at a mercury surface. II. The effect of frequency on the capacity and resistance of ideally polarized electrodes.J. Am. Chem. Soc.,68, 301.CrossRefGoogle Scholar
  17. Grahame, D. C. (1952) Mathematical theory of faradaic admittance.J. Electrochem. Soc.,99, 370c.Google Scholar
  18. Greef, R. (1978) Instruments for use in electrode process research.J. Phys. E.: Sci. Instrum.,11, 1.CrossRefGoogle Scholar
  19. Jaron, D., Schwan, H. P. andGeselowitz, D. B. (1968) A mathematical model for the polarization impedance of cardiac pacemaker electrodes.Med. & Biol. Eng.,6, 579.Google Scholar
  20. Kahn, A. andGreatbatch, W. (1974) Physiological electrodes. InMedical engineering,Ray, C. D. (Ed.) Year Book Med. Publ.Google Scholar
  21. McDonald, J. R. (1971) Electrical response of materials containing space charge with discharge at the electrodes.J. Chem. Phys.,54, 2026.CrossRefGoogle Scholar
  22. Mohilner, D. M., Kreuser, J. C., Nakadomari, H. andMohilner, P. R. (1976) Computer controlled differential capacitance measurements.J. Electrochem. Soc.,123, 359.CrossRefGoogle Scholar
  23. Murdock, C. C. andZimmerman, E. E. (1936) Polarization impedance at low frequencies.Physics 7, 211.CrossRefGoogle Scholar
  24. Randles, J. E. B. (1947) Kinetics of rapid electrode reactions.Disc. Faraday Soc.,1, 11.Google Scholar
  25. Scheider, W. (1977) Real-time measurement of dielectric relaxation of biomolecules: kinetics of a protein-ligand binding reaction.Ann. N.Y. Acad. Sci.,303, 47.Google Scholar
  26. Schwan, H. P. (1963) Determination of biological impedances. InPhysical techniques in biological research (Vol. 6).Nastuk, W. L. (Ed.). Academic Press, New York, 323–407.Google Scholar
  27. Schwan, H. P. andMaczuk, J. G. (1965) Electrode polarization impedance: limits of linearity.Proc. 18th Ann. Conf. Eng. Biol. Med.,5, 24.Google Scholar
  28. Schwan, H. P. (1966) Alternating current electrode polarisation.Biophysik,3, 181.CrossRefGoogle Scholar
  29. Schwan, H. P. (1968) Electrode polarisation impedance and measurements in biological materials.Ann. N.Y. Acad. Sci.,148, 191.Google Scholar
  30. Silverman, H. T., Miller, I. F. andSalkind, A. J. (1973)Electrochemical bioscience and bioengineering. Electrochemical Soc., Inc., p. 160, discussion of the paper byPiersma et al. Google Scholar
  31. Simpson, R. W. (1976)Nonlinear electrode polarization impedance. Ph.D. Dissertation, Univ., Pennsylvania.Google Scholar
  32. Simpson, R. W., Berberian, J. G. andSchwan, H. P. (1980) Nonlinear AC and DC Polarization of Platinum Electrodes. IEEE Trans.,BME27, 166–171.Google Scholar
  33. Sluyters-Rehbach, M. andSluyters, J. H. (1970) Sine wave methods in the study of electrode processes.J. Electroanal. Chem.,4, 1.Google Scholar
  34. Timmer, B., Sluyters-Rehbach, M. andSluyters, J. H. (1968) On the impedance of galvanic cells. XXIII. Electrode Reactions with Specific Adsorption of the Electroactive Species: the Pb+2/Pb(Hg) Electrode in M KNO3-KCl Mixtures.J. Electroanal. Chem.,18, 93.Google Scholar
  35. Venkatesh, S. D. andChin, T. (1979) The alternating current electrode processes.Israel. J. Chem.,18, 56.Google Scholar
  36. Warburg, E. (1899) Ueber das Verhalten sogenannter unpolarisirbarer Elektroden gegen Wechselstrom.Ann. Physik. und Chemie,67, 493.MATHGoogle Scholar
  37. Warburg, E. (1901) Ueber die Polarisations capacität des Platins.Ann. der. Physik.,6, 125.MATHGoogle Scholar

Copyright information

© IFMBE 1982

Authors and Affiliations

  • B. Onaral
    • 2
  • H. P. Schwan
    • 1
  1. 1.Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Electrical and Computer Engineering DepartmentDrexel UniversityPhiladelphiaUSA

Personalised recommendations