Skip to main content
Log in

Continuous determination of cardiac output during exercise by the use of impedance plethysmography

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A computer-based system has been developed that enables the continuous measurement of cardiac output at rest as well as during exercise. The respiratory and motion artefacts appearing in the first derivative of the transthoracic impedance change (dZ/dt) were eliminated by adopting an ensemble averaging technique. A sufficiently high correlation was observed between cardiac outputs determined by the impedance and CO2 rebreathing methods. The system may facilitate the physiological investigation of cardiac function during exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asmussen, E. andNielsen, M. (1956) Physiological dead space and alveolar gas pressures at rest and during muscular exercise.Acta Physiol. Scand.,38, 1–21.

    Google Scholar 

  • Åstrand, P., Cuddy, T. E., Saltin, B. andStenberg, J. (1964) Cardiac output during submaximal and maximal work.J. Appl. Physiol.,19, 268–274.

    Google Scholar 

  • Baker, L. E., Judy, W. V., Geddes, L. E., Langley, F. M. andHill, D. W. (1971) The measurement of cardiac output by means of electrical impedance.Cardiovascular Research Centre Bull.,9, 135–145.

    Google Scholar 

  • Boer, P., Roos, J. C., Geyskes, G. G. andDorhout Mees, E. J. (1979) Measurement of cardiac output by impedance cardiography under various conditions.Am. J. Physiol.,237, H491–496.

    Google Scholar 

  • Comroe, J. H. Jr., Forster, R. E., DuBois, A. B., Briscoe, W. A. andCarlsen, E. (1962) The lung. 2nd Ed., Year Book Medical Publishers, (Chicago).

    Google Scholar 

  • Defares, J. G. (1958) Determination ofp vCO2 from the exponential CO2 rise during rebreathing.J. Appl. Physiol.,13, 159–164.

    Google Scholar 

  • Denniston, J. C., Maher, J. T., Reeves, J. T., Cruz, J. C., Cymerman, A. andGrover, R. F. (1976) Measurement of cardiac output by electrical impedance at rest and during exercise.J. Appl. Physiol.,40, 91–95.

    Google Scholar 

  • Ferguson, R. J., Faulkner, J. A., Lulius, S. andConway, J. (1968) Comparison of cardiac output determined by CO2 rebreathing and dye-dilution methods.J. Appl. Physiol.,25, 450–454.

    Google Scholar 

  • Gollan, F., Kizakevich, P. N. andMcDermott, J. (1978) Continuous electrode monotoring of systolic time intervals during exercise.Brit. Heart J.,40, 1390–1396.

    Google Scholar 

  • Ito, H., Yamakaoshi, K. andTogawa, T. (1977) A model study of stroke volume values calculated from impedance and their relation to the waveform of blood flow.IEEE Trans.,BME-24, 489–491.

    Google Scholar 

  • Jernérus, R., Lundin, G. andThomson, D. (1963) Cardiac output in healthy subjects determined with a CO2 rebreathing method.Acta Physiol. Scand.,59, 390–399.

    Article  Google Scholar 

  • Klausen, K. (1965) Comparison of CO2 rebreathing and acetylene methods for cardiac output.J. Appl. Physiol.,20, 763–766.

    Google Scholar 

  • Kobayashi, Y., Andoh, Y., Fujinami, T., Nakamura, K., Takada, K., Takeuchi, T. andOkamoto, M. (1978). Impedance cardiography for estimating cardiac output during submaximal and maximal work.J. Appl. Physiol.,45, 459–462.

    Google Scholar 

  • Kubicek, W. G., Karnegis, J. M., Patterson, R. P., Witsoe, D. A. andMattson, R. H. (1966) Development and evaluation of an impedance cardiac output system.Aerospace Med.,37, 1208–1212.

    Google Scholar 

  • Kubicek, W. G., Patterson, R. P. andWitsoe, D. A. (1970) Impedance cardiography as a noninvasive method of monitoring cardiac function and other parameters of the cardiovascular system.Ann. NY Acad. Sci.,170, 724–732.

    Google Scholar 

  • Muiesan, G., Sorbini, C. A., Solinas, E., Grassi, V., Casucci, G. andPetz, E. (1968) Comparison of CO2-rebreathing and direct Fick methods for determining cardiac output.J. Appl. Physiol.,24, 424–429.

    Google Scholar 

  • Smith, J. J., Bush, J. E., Wiedmeier, V. T. andTristani, F. E. (1970) Application of impedance cardiography to study of postural stress.J. Appl. Physiol. 29, 133–137.

    Google Scholar 

  • Tanaka, K., Kanai, H., Nakayama, K. andOno, N. (1970) The impedance of blood: the effects of red cell orientation and its application.Jpn. J. Med. Eng. 8, 436–443.

    Google Scholar 

  • Van der Hoeven, G. M. A., Clerens, P. J. A., Donders, J. J. H., Beneken, J. E. W. andVonk, J. T. C. (1977) A study of systolic time intervals during uninterrupted exercise.Brit. Heart. J.,39, 242–254.

    Google Scholar 

  • Vanfraechem, J. H. P. (1979) Stroke volume and systolic time interval adjustments during bicycle exercise.J. Appl. Physiol.,46, 588–592.

    Google Scholar 

  • Yu-Tang, S. andWen-Ti, S. (1979) Comparative study on measurement of stroke volume by impedance method and electromagnetic flow method.Chinese Med. J.,92, 79–84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyamoto, Y., Takahashi, M., Tamura, T. et al. Continuous determination of cardiac output during exercise by the use of impedance plethysmography. Med. Biol. Eng. Comput. 19, 638–644 (1981). https://doi.org/10.1007/BF02442779

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02442779

Keywords

Navigation