Medical and Biological Engineering and Computing

, Volume 19, Issue 5, pp 524–534 | Cite as

Numerical scheme for modelling oxygen transfer in tubular oxygenators

  • G. Jayaraman
  • A. Lautier
  • Bui-Mong Hung
  • G. Jarry
  • D. Laurent
Article

Abstract

The diffusion equation for oxygen transfer in tubular membrane oxygenators has been solved numerically by using the Crank-Nicolson method. The iterative procedure takes care of the nonlinear nature of the equations used in the model. The usual hypotheses have been used for the establishment of the nonlinear partial differential equation. Velocity profile (Newtonian, Cassonian fluid) and membrane resistance have been taken into account. Theoretical results have been compared with those obtained by the advanced front theory.

Experimental results with several types of device are presented using either blood or saline. Boundary conditions are analysed. Comparisons between theory and results of experiments are presented.

Keywords

Artificial lung Membrane oxygenator Modelling Oxygen transfer Tubes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman, P. L. (1961) Blood and other body fluids. InFederation of American Societies for Experimental Biology,Dittmer, D. S. (Ed.),Biological Handbooks.Google Scholar
  2. Bellhouse, B. J., Bellhouse, F. H., Curl, C. M., MacMillan, T. I., Gunning, A. J., Spratt, E. H., MacMurray, S. B. andNelems, J. M. (1973) A high efficiency membrane oxygenator and pulsatile pumping system, and its application to animal trials.Trans. Amer. Soc. Artif. Intern. Organs,19, 72.Google Scholar
  3. Buckles, R. G., Merril, E. W. andGilliland, E. R. (1968) An analysis of oxygen absorption in a tubular membrane oxygenator.A.I.Ch.E.J.,14, 403–408.Google Scholar
  4. Casson, N. (1959)Rheology of disperse systems,Mill,C. C. (Ed.), Pergamon Press, New York, chap. 5.Google Scholar
  5. Carslaw, H. S. andJaerger, J. C. (1959)Conduction of heat in solids, Clarendon Press, Oxford.Google Scholar
  6. Colton, C. K. andDrake, R. F. (1971) Effect of boundary conditions on oxygen transport to blood flowing in a tube.Chem. Engr. Progr. Symp., No. 114,67, 88–95.Google Scholar
  7. Colton, C. K. (1976) Fundamentals of gas transport in blood. InArtifical lungs for acute respiratory failure,Zapol,W. M. andQvist,J. (Eds.). Academic Press, New York, San Francisco, London.Google Scholar
  8. Dorn, W. S. andMcCracken, D. D. (1972) Numerical methods with Fortran IV: case studies, Wiley, New York.MATHGoogle Scholar
  9. Dorson, W. Jr., Baker, E., Cohen, M. L., Meyer, B., Molthan, D. andElgas, R. (1969) A perfusion system for infants.Trans. Am. Soc. Artif. Int. Organs,15, 155–160.Google Scholar
  10. Dorson, W. J. (1970) Oxygenation of blood for clinical applications. InBlood oxygenation,Hershey,D. (Ed.), Plenum Press, New York.Google Scholar
  11. Dorson, W. J. andVoorhees, M. E. (1976) Analysis of oxygen and carbon-dioxide transfer in membrane lungs. InArtificial lungs for acute respiratory failure,Zapol, W. M. andQvist, J. (Eds.), Academic Press.Google Scholar
  12. Drinker, P. A., Bartlett, R. H., Bialer, R. M. andNoyes, B. S. Jr. (1969) Augmentation of membrane gas transfer by induced sensory flows.Surgery,66, 775–781.Google Scholar
  13. Eberhart, R. C., Dengle, S. K. andCurtis, R. M. (1978) Mathematical and experimental methods for design and evaluation of membrane oxygenators.Artificial Organs,2, 19–34.CrossRefGoogle Scholar
  14. Forsythe, G. E. andWason, W. R. (1960) Finite differences methods for partial differential equation, Wiley, New York.Google Scholar
  15. Gaylor, J.D.S., Murphy, J.F., Caprini, J.A., Uckerman, I. andMockros, I. F. (1973) Gas transfer and thrombogenesis in an annular membrane oxygenator with active blood mixing. —Trans. Amer. Soc. Artif. Intern. Organs,20, 516–524.Google Scholar
  16. Gertz, K. H. andLoeschske (1954) Bestimmung der Diffusion- Koeffizienten von H2, O2, N2 and He in Wasser und Blutserum bei Konstant gehaltener Konvektion.Z. Natuforschg 96:1.Google Scholar
  17. Goldsmith, H. L. (1971a) Red cell motions and wall interactions in tube flow.Fed. Proc.,30, 1578.Google Scholar
  18. Goldsmith, H. L. (1971b) Deformation of human red cells in tube flow.Biorheology,7, 235.Google Scholar
  19. Goldstick, T. K. andFatt, I. (1970) Diffusion of oxygen in solutions of blood protein.Chem. Eng. Prog. Symp.,66, 110–113.Google Scholar
  20. Harris, G. W., Tomkins, F. O., de Fillippi, R. P., Porier, S. H. andBuckley, M. J. (1970) Development of capillary membrane blood oxygenators. InBlood oxygenation,Hershey,D. (Ed.), Plenum Press, New York.Google Scholar
  21. Hershey, D. andKarhan, T. (1968) Diffusion coefficients for oxygen transport in whole blood.A.I.Ch.E.J.,14, 6, 969–972.Google Scholar
  22. Keller, K. H. andFriedlander, S. K. (1966) The steady state transport of oxygen through hemoglobin solutions.J. Gen. Physiol.,49, 4 663–679.CrossRefGoogle Scholar
  23. Keller, K. H. (1971) Effect of fluid shear on mass transport in flowing blood.Fed. Proc.,30, 1591–1599.Google Scholar
  24. Kreuzer, F. (1953) Modellversuche zum Problem der Sauerstoff Diffusion in der Lunger.Helv. Physiol. et Pharm. Acta. Suppl. IX.Google Scholar
  25. Lautier, A., Grossin, R. andLaurent, D. (1971) The use of mathematical and physical models for optimization of oxygenators.Trans. Am. Soc. Artif. Int. Organs,17, 303–308.Google Scholar
  26. Lightfoot, E. N. (1968) Low order approximation for membrane blood oxygenators.A.I.Ch.E.J.,14, 669–670.Google Scholar
  27. Margaria, R., Turelli, G. andPini, A. (1962) Definizione matematica della curva di dissociazione dell'HbO2.Rend. Sc. Fis. Mat. e. Nat.,32, 606–613.Google Scholar
  28. Mockros, L. F. andGaylor, J. D. S. (1975) Artificial lung design: tubular membrane units.Med. & Biol. Eng.,13, 171–181.Google Scholar
  29. Overcash, M. R. (1972) Couette oxygenator. PhD thesis, University of Minnesota.Google Scholar
  30. Rossing, R. G. andCain, S. M. (1966) A nomogram relatingpO2, pH, temperature and hemoglobin saturation in the dog.J. Appl. Physiol.,21, 195–201.Google Scholar
  31. Shay, W., Schultz, D. G. andShah, V. L. (1974) Diffusion of oxygen through blood flowing in a tube. 27th ACEMB, 194.Google Scholar
  32. Schultz, D. H., Shah, V. L., Shay, W. andWang, P. (1977) Diffusion of oxygen and carbon dioxide through blood flowing in a channel.Med. & Biol. Eng. & Comput.,15, 98–105.Google Scholar
  33. Stein, T. R., Martin, J. C. andKeller, K. H. (1971) Steady state oxygen transport through red blood cell suspensions.J. Appl. Physiol.,31, 397–402.Google Scholar
  34. Villarroel, F., Lanham, C. E., Bischoff, K. B., Regan, T. M. andCalkins, J. M. (1970) A mathematical model for the prediction of oxygen, carbon dioxide and pH with augmented diffusion in capillary blood oxygenators. InBlood oxygenation,Hershey,D. (Ed.), Plenum Press, New York.Google Scholar
  35. Weissman, M. B. andMockros, L. F. (1967) Oxygen transport to blood flowing in round tubes.J. Engng. Mech. Div. Proc. ASCE,93, 225–244.Google Scholar
  36. Weissman, M. H. andMockros, L. F. (1969) Oxygen and carbon dioxide transfer in membrane oxygenators.Med. & Biol. Eng.,7, 169–184.Google Scholar

Copyright information

© IFMBE 1981

Authors and Affiliations

  • G. Jayaraman
    • 1
    • 2
  • A. Lautier
    • 1
    • 2
  • Bui-Mong Hung
    • 1
    • 2
  • G. Jarry
    • 1
    • 2
  • D. Laurent
    • 1
    • 2
  1. 1.Centre for Atmospheric and Fluid SciencesIndian Institute of TechnologyNew Delhi
  2. 2.Faculte de MedecineLaboratoire de Physiologie et INSERM U 138Cedex

Personalised recommendations