Dual-channel self-balancing impedance plethysmograph for vascular studies

  • J. S. Arenson
  • R. S. C. Cobbold
  • K. W. Johnston
Article

Abstract

A self-balancing two-channel electrical impedance plethysmograph is described. It uses a phasesensitive detector and incorporates both fine and coarse feedback loops to achieve rapid, automatic balancing of the resistive component of the tissue impedance. A calibrated output is produced which is proportional to the tissue resistance and is independent of the exciting current amplitude. The system has a bandwidth from 0–30 Hz and a resolution of 0·002 ω. Results of preliminary investigations are presented illustrating its application for the measurement of arterial pulse-wave velocity, the diagnosis of deep-vein thrombosis and the measurement of systolic blood pressure.

Keywords

Impedance plethysmography Pulse-wave velocity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benedict, K. T., Wheeler, H. B. andPatwardhan, N. A. (1977) Impedance plethysmography: correlation with contrast venography.Radiology,125, 695–699.Google Scholar
  2. Flanigan, D. P., Goodreau, J. J., Burnham, S. J., Bergan, J. J. andYao, J. S. T. (1978) Vascular-laboratory diagnosis of clinically suspected acute deep-vein thrombosis.Lancet 2 (8085), 331–334.CrossRefGoogle Scholar
  3. Gazzaniga, A. B., Pacela, A. F., Bartlett, R. H. andGeraghty, T. R. (1972) Bilateral impedance rehography in the diagnosis of deep-vein thrombosis of the legs.Arch. Surg.,104, 515–519.Google Scholar
  4. Hill, D. W. andLowe, H. J. (1973) The use of the electricalimpedance technique for the monitoring of cardiac output and limb bloodflow during anaesthesia,Med. & Biol. Eng.,5, 534–545.Google Scholar
  5. Hull, R., Taylor, D. W., Hirsh, J., Sackett, D. L., Powers, P., Turpie, A. G. G. andWalker, I. (1978) Impedance plethysmography: the relationship between venous filling and sensitivity and specificity for proximal vein thrombosis.Circulation,58, 898–902.Google Scholar
  6. Jaffrin, M. Y. andVanhoutte, C. (1979) Quantitative interpretation of arterial impedance plethysmographic signals.Med. & Biol. Eng. & Comput.,17, 2–10.Google Scholar
  7. Kanai, H., Sakamoto, K. andMiki, M. (1976) Impedance of blood; the effects of red cell orientation. Digest of the 11th ICMBE, Ottawa, 238–239.Google Scholar
  8. Kassam, M., Johnston, K. W. andCobbold, R. S. C. (1977) An automatic multifunction pressure cuff control unit.Med. Progr. Technol.,5, 157–160.Google Scholar
  9. Kubicek, W. G., Kottke, F. J., Ramos, M. U., Patterson, R. P., Witsoe, D. A., Labree, J. W., Remole, W., Layman, T. E., Schoening, H. andGaramela, J. T. (1974) The Minnesota impedance cardiograph: theory and applications.Biomed. Eng.,9, 410–416.Google Scholar
  10. McDonald, D. A. (1974)Blood flow in arteries. (2nd Edn.) E. Arnold, London.Google Scholar
  11. Nyboer, J. (1970)Electrical impedance plethysmography. (2nd Edn.), C. C. Thomas, Springfield, Ill.Google Scholar
  12. Peura, R. A., Wheeler, H. B., Penny, B. C. andArcuri, J. (1976) Impedance plethysmography: relative contribution of blood volume and red cell velocity changes of the signal strength. Digest of the 11th ICMBE, Ottawa, 240–241.Google Scholar
  13. Romagnoli, A. (1956) Indirect blood pressure measurement in sheep and goats employing electronic plethysmography.Brit. Vet. J.,112, 247–252.Google Scholar
  14. Sakamoto, K., Muto, K., Kanai, H. andIizuka, M. (1979) Problems of impedance cardiography.Med. & Biol. Eng. & Comput.,17, 697–709.CrossRefGoogle Scholar
  15. Sakamoto, K. andKanai, H. (1979) Electrical characteristics of flowing blood.IEEE Trans.,BME-26, 686–695.Google Scholar

Copyright information

© IFMBE 1981

Authors and Affiliations

  • J. S. Arenson
    • 1
    • 2
  • R. S. C. Cobbold
    • 1
    • 2
  • K. W. Johnston
    • 1
    • 2
  1. 1.Institute of Biomedical Engineering Sciences, TechnionHaifaIsrael
  2. 2.Institute of Biomedical EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations