Simulation of laser tomoscopy in a heterogeneous biological medium

  • J. M. Maarek
  • G. Jarry
  • J. Crowe
  • Bui M. -H. 
  • D. Laurent


A Monte Carlo model has been developed to study the propagation of an ultrashort light pulse through a heterogeneous thick biological specimen. A circular blood vessel is moved within a tissular slab to simulate biological specimen scanning using a picosecond laser source and a collimated ultrafast multichannel opticl shutter. Features of the transmitted light are computed for each position of the blood vessel. The computer program gives an account of the transmitted photons, the flight time which does not exceed straightforward crossing time plus time gate of known duration. A small blood vessel (radius R=2 mm) placed in a 40 mm thick slab is easily located when a time gate of 10 ps duration is employed. Such a time gate also allows the detection of a middle-sized vessel (R=4 mm) embedded in a thicker sample (80 mm). The contrast computed for the transmittance profile is greatly improved when a time gate is used. In addition, shifting of the blood vessel towards the unilluminated side of the sample decreases the contrast. We demonstrate that the time selection process may provide a substantial improvement to the laser tomoscopy technique when used for imaging biological media.


Laser Monte Carlo method Time resolution Tomoscopy Transillumination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barer, R., Ross, K. F. A. andTkaczyk, S. (1953) Refractometry of living cells.Nature,171, 720–724.CrossRefGoogle Scholar
  2. Carter, L. L., andCashwell, E. D. (1967) Particle transport simulation with the Monte-Carlo method. National Technical Information Service, US Department of Commerce, Springfield, Virginia.Google Scholar
  3. de Palma, J. J. andGasper, J. (1972) Determining the optical properties of photographic emulsions by the Monte-Carlo method.Photogr. Sci. Eng.,16, 181–191.Google Scholar
  4. Duguay, M. A. andMattick, A. T. (1971) Ultra high speed photography of picosecond light pulses and echoes.Appl. Opt.,10, 2162–2170.Google Scholar
  5. Dunn, W. L. (1981) Inverse Monte-Carlo analysis.J. Comput. Phys.,41, 154–166.MATHMathSciNetCrossRefGoogle Scholar
  6. Ghesquiere, S., Debray, S., Maarek, J. M., Fraysse, F., Besson, B., Bui-Mong-Hung andJarry, G. (1984) L'image par transillumination collimatée de tissus et d'organes de mammifères.Innov. Tech. Biol. Med.,5, 22–32.Google Scholar
  7. Goldman, L. (1979) Laser diagnostic medicine. Proc. Laser Optoelectronics 79, IPC. Sc. & Techn. Press, 327–329.Google Scholar
  8. Gros, C., Quenneville, Y. andHummel, U. (1972) Diaphanologie mammaire.J. Radiol. Electrol,53, 297–306.Google Scholar
  9. Jarry, G., Ghesquiere, S., Maarek, J. M., Fraysse, F., Debray, S., Bui-Mong-Hung andLaurent, D. (1984) Imaging mammalian tissues and organs using laser collimated transillumination.J. Biomed. Eng.,6, 70–74.Google Scholar
  10. Jobsis, F. F. (1977) Non invasive monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters.Science,198, 1264–1267.Google Scholar
  11. Leimdorfer, M. (1964) A Monte-Carlo method for the analysis of gamma radiation transport from distributed sources in laminated shields.Nukleonik 6, 58–65.Google Scholar
  12. Levitt, L. B. (1968) The use of self optimized exponential biasing in obtaining Monte-Carlo estimates of transmission probabilities.Nucl. Sci. Eng.,31, 500–504.Google Scholar
  13. Longini, R. L. andZdrojkowski, R. J. (1968) A note on the theory of backscattering of light by living tissue.IEEE Trans.,BME-15, 4–10.Google Scholar
  14. Maarek, J. M., Jarry, G., Rousseaux, J. C., Ghesquiere, S., Mathy, J. M. andBui-Mong-Hung (1982) Etude de la diffusion et de la transmission optiques dans les tissus biologiques à l'aide de fibres optiques et de lasers. Proc. Laser Médical 82, Masson, Paris, 56–58.Google Scholar
  15. Maarek, J. M., Jarry, G., de Cosnac, B. andBui-Mong-Hung (1982) Simulation of transillumination through blood and tissues. Proc. World Cong. on Biomed. Eng., Hamburg, 22–30.Google Scholar
  16. Maarek, J. M., Jarry, G., de Cosnac, B., Lansiart, A. andBui-Mong-Hung (1984) A simulation method for the study of laser transillumination of biological tissues.Ann. Biomed. Eng.,12, 281–304.CrossRefGoogle Scholar
  17. Martin, J. L., Lecarpentier, Y., Antonetti, A. andGrillon, G. (1980) Picosecond laser stereometry light scattering measurements on biological material.Med. & Biol. Eng. & Comput.,18, 250–252.CrossRefGoogle Scholar
  18. Nakase, M. (1983) Determination of the MTF of positive photoresistes using the Monte-Carlo method.Photogr. Sci. Eng.,27, 254–260.Google Scholar
  19. Reynolds, L., Johnson, C. andIshimaru, A. (1976) Diffuse reflectance from a finite blood medium: applications to the modeling of fiber optic catheters.Appl. Optics,15, 2059–2067.CrossRefGoogle Scholar
  20. Swain, C. G. andSwain, M. S. (1980) A uniform random number generator that is reproducible, hardware independant and fast.J. Chem. Inf. Comput. Sci.,20, 56–58.CrossRefGoogle Scholar
  21. Swick, H. M., Cunningham, M. D. andShield, L. K. (1976) Transillumination of the skull in premature infants.Pediatrics,58, 658–664.Google Scholar
  22. Takatani, S. (1978) On the theory and development of a non invasive tissue reflectance oximeter. Ph. D. Dissertation, Case Western Reserve University, Cleveland, Ohio, USA.Google Scholar
  23. Takatani, S. andGraham, M. D. (1979) Theoretical analysis of diffuse reflectance from a two-layer tissue model.IEEE Trans.,BME-26, 656–664.Google Scholar
  24. Wilson, B. C. andAdam, G. (1983) A Monte-Carlo model for the absorption and flux distribution of light in tissue.Med. Phys.,10, 824–830.CrossRefGoogle Scholar
  25. Zdrojkowski, R. J. andPisharoty, N. R. (1970) Optical transmission and reflection by blood.IEEE Trans.,BME-17, 122–128.Google Scholar

Copyright information

© IFMBE 1986

Authors and Affiliations

  • J. M. Maarek
    • 1
  • G. Jarry
    • 1
  • J. Crowe
    • 2
  • Bui M. -H. 
    • 1
  • D. Laurent
    • 1
  1. 1.Laboratory of Physiology and INSERM Unit U. 138Créteil Medical SchoolCreteilFrance
  2. 2.Bioengineering Unit, Department of PaediatricsJohn Radcliffe HospitalOxfordUK

Personalised recommendations