Statistical procedures for interference EMG power spectra estimation

  • D. Popivanov
  • A. Todorov
Article

Abstract

A series of statistical procedures are proposed to estimate the power spectrum (PS) of interference EMG and to compare several PS obtained under different conditions. These procedures are performed as an interactive program system and include: discovering stationary segments in a long EMG record and checking the stationarity by Mood's and Wilcoxon's range tests; estimation of EMG PS by using different windows, averaging and digital filtering; appropriate PS transformation to achieve Gaussian distribution; comparison of several PS by using the multiple range test of Newman-Keuls. This approach has been applied on interference EMG recorded from m. abductor digiti quinti and from m. biceps brachii during weak and moderate tensions. The results obtained allow us to recommed some of the tested procedures for routine spectral analysis of interference EMG.

Keywords

EMG power spectrum Spectra transformations Range procedures Spectra Comparison Statistical estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bendat, J. S. andPiersol, A. G. (1967)Measurement and analysis of random data. J. Wiley and Sons, Inc. (in Russian).Google Scholar
  2. Childers, D. G., Aunon, J. I. andMcGillem, C. D. (1981) Spectral analysis: prediction and extrapolation.Critical Review in Bioeng.,6, 133–175.Google Scholar
  3. Coppola, R. (1979) Isolating low frequency activity in EEG spectrum analysis.Electroencephal. Clin. Neurophysiol.,46, 224–226.CrossRefGoogle Scholar
  4. Gasser, T., Bacher, P. andMocks, J. (1982) Transformation toward the normal distribution by broad spectral parameters of the EEG.,53, 119–124.CrossRefGoogle Scholar
  5. Gydikov, A. (1980) Dependence of the potentials obtained by averaging of the summated EMG from different factors.Acta Physiol. et Pharmacol. Bulg.,6, 3–12.Google Scholar
  6. Gydikov, A. (1981) Spreading of potentials along the muscle investigated by averaging of the summated EMG.Electromyogr. Clin. Neurophysiol.,21, 525–538.Google Scholar
  7. Gydikov, A. (1982) New investigations by averaging of the summated EMG on the propagation of the muscle potentials.22, 89–103.Google Scholar
  8. Gydikov, A., Kostov, K., Kossev, A. andKosarov, D. (1984) Estimation of the spreading velocity and the parameters of the muscle potentials by averaging of the summated electromyogram.,24, 191–212.Google Scholar
  9. Hajek, J. andSidak, Z. (1967)Theory of rank tests. Academia, Prague.Google Scholar
  10. Heald, M. A. (1984) On choosing the bin width of a Gaussian histogram.Am. J. Phys.,52, 254–255.CrossRefGoogle Scholar
  11. Hermans, H. J., Boon, K. L. andZilvold, G. (1984) The clinical use of surface EMG.Electromyogr. Clin. Neurophysiol.,24, 243–265.Google Scholar
  12. Inbar, G. F. andNoujaim, A. E. (1984) On surface EMG spectral characterization and its application to diagnostic classification.IEEE Trans.,BME-31, 597–605.Google Scholar
  13. Jenkins, G. M. andWats, D. G. (1969)Spectral analysis and its applications. Holden Day (in Russian).Google Scholar
  14. John, E. R., Ahn, H., Prichep, L., Trepetin, M., Brown, D., andKaye, H. (1980) Developmental equations for the electroencephalogram.Science,210, 1355–1358.Google Scholar
  15. Kadefors, R., Petersen, I. andBroman, H. (1973) Spectral analysis of events in electromyogram. InNew developments in electromyography and clinical neurophysiology, Vol. I.D. E. Desmedt (Ed.), Karser, Basel, 628–637.Google Scholar
  16. Kostov, K., Kossev, A. andGydikov, A. (1984) Utilisation of the stimulated electromyogram for estimation of the functional state of the muscles.Electromyogr. Clin. Neurophysiol.,24, 387–399.Google Scholar
  17. Matoushek, M. andPetersen, I. (1983) A method for assessing alertness fluctuations from EEG spectra.Electroencephal. Clin. Neurophysiol.,55, 108–113.CrossRefGoogle Scholar
  18. Ruchkin, D. S. andGlaser, E. (1976) Simple digital filters for examining CNV and P300 on a single trial basis. In Proceedings of EPIC IV,Otto, D. (Ed.), EPA-600, 1978, 579–582.Google Scholar
  19. Stalberg, E., Chu, J., Briel, V., Nandedkar, S., Stalberg, S. andEricson, M. (1983) Automatic analysis of the EMG interference pattern.Electroencephal. Clin. Neurophysiol.,56, 672–681.CrossRefGoogle Scholar
  20. Tanzi, F. andTaglietti, V. (1981) Spectral analysis of surface motor unit action potentials and surface interference electromyogram.IEEE Trans.,BME-28, 318–324.Google Scholar
  21. Van Boxtel, A. andSchomaker, L. R. B. (1983) Motor unit firing rate during static contraction indicated by surface EMG power spectrum.,BME-30, 601–608.Google Scholar
  22. Van Boxtel, A. andSchomaker, L. R. B. (1984) Influence of motor unit firing statistics on the median frequency of the EMG power spectrum.Eur. J. Appl. Physiol.,52, 207–213.CrossRefGoogle Scholar
  23. Winer, B. J. (1971)Statistical principles in experimental design. McGraw-Hill, NY, 185–201.Google Scholar

Copyright information

© IFMBE 1986

Authors and Affiliations

  • D. Popivanov
    • 1
  • A. Todorov
    • 1
  1. 1.Institute of PhysiologyBulgarian Academy of ScienceSofiaBulgaria

Personalised recommendations