Mechanical pathophysiology of some heart diseases: a theoretical model study

  • R. Beyar
  • S. Sideman


Sarcomere dynamics are related to the global left ventricular (LV) function in some representative pathological states, by using a theoretical model which combines sarcomere function, LV fibrous structure and geometry with the haemodynamic loading conditions. The analysis shows that pressure (concentric) hypertrophy due to hypertension or aortic stenosis is associated with an increase of the normal endocardial-to-epicardial gradient(s) of oxygen demand, which may be one of the causes for the development of endocardial fibrosis. The analysis also indicates that sarcomere shortening is relatively normal in compensated volume (eccentric) hypertrophy. Mitral stenosis demonstrates a case of decreased LV function, secondary to a chronic decrease in LV end diastolic volume, with sarcomeres that operate at their lowest length range. Conversely, the sarcomere function is depressed in cardiomyopathy; the heart's pumping function is maintained by appropriate adjustment mechanisms. However, the sarcomeres show minimal shortening and function at their highest length range with low (or zero) functional reserve. The study thus provides a quantitative tool that relates global LV function to local sarcomere dynamics in various pathological states.


Cardiac Left ventricle Model Pathophysiology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bache, R. I., Wang, Y. andGreenfield, J. C. Jr., (1973) Left ventricular ejection time in valvular aortic stenosis.Circ.,47, 527–533.Google Scholar
  2. Beyar, R. andSideman, S. (1984) Computer study of the left ventricular performance based on its structure, sarcomere dynamics and electrical activation propagation.Circ. Res.,55, 358–374.Google Scholar
  3. Beyar, R. andSideman, S. (1985) A mathematical approach to interrelation between the coronary blood flow and the metabolic demands. InSimulation and imaging of the cardiac system.Sideman, S. andBeyar, R. (Eds.), Martinus Nijhoff, 332–357.Google Scholar
  4. Beyar, R. andSideman, S. (1986a) Left ventricular mechanics related to the local distribution of oxygen demand throughout the wall.Circ. Res.,58, 669–677.Google Scholar
  5. Beyar, R. andSideman, S. (1986b) Spatial energy balance within a structural model of the left ventricle.Ann. Biomed. Eng.,14, 467–487.CrossRefGoogle Scholar
  6. Bonow, R. O., Rosing, D. R., Kent, K. M. andEpstein, S. E. (1982) The timing of operation for chronic aortic regurgitation.Am. J. Cardiol.,50, 325–336.CrossRefGoogle Scholar
  7. Braunwald, E. (1983) The cardiomyopathies and myocardities. InHeart disease: a textbook of cardiovascular medicine, 2nd edn.Braunwald, E. (Ed.), Saunders, Chap. 41.Google Scholar
  8. Carabelo, B. A., Green, L. A., Grossman, W., Cohn, L. H., Kosten, J. K. andCollins, J. J. (1980) Hemodynamic determinants of prognosis of aortic valve replacement in critical aortic stenosis in advanced congestive heart failure.Circ.,62, 42–44.Google Scholar
  9. Caspari, P. G., Newcomb, M., Gibbson, K. andHarris, P. (1977) Collagen content in the normal and hypertrophied human ventricle.Cardiovasc. Res.,11, 554–558.Google Scholar
  10. Feigl, E. O. (1983) Coronary physiology.Physiol. Rev.,63, 1–205.Google Scholar
  11. Feit, T. S. (1979) Diastolic pressure volume relationship and distribution of pressure and fiber extension across the wall of a model left ventricle.Biophys. J.,28, 143–166.CrossRefGoogle Scholar
  12. Gaasch, A. K., Carabelo, B. A., Cepin, O. andSpann, J. F. (1983) Left ventricular ejection performance and systolic muscle function in patients with mitral stenosis.Circ.,67, 148–154.Google Scholar
  13. Gamble, W. G., LaFarge, C. G., Fuler, D. C., Seisal, J. andMonroe, R. G. (1974) Regional coronary venous oxygen saturation and myocardial oxygen tension following abrupt changes in ventricular pressure in the isolated dog heart.Circ. Res.,34, 672–681.Google Scholar
  14. Gault, J. H., Covell, J. W., Braunwald, E. andRoss, J. Jr. (1970) Left ventricular performance following correction of free aortic regurgitation.Circ.,42, 773–780.Google Scholar
  15. Hatle, L. (1981) Noninvasive assessment and differentiation of left ventricular outflow obstruction with Doppler ultrasound. ——Ibid.,69, 381–387.Google Scholar
  16. Hoffman, J. I. E. (1978) Determinants and prediction of transmural myocardial perfusion. ——Ibid.,58, 381–391.Google Scholar
  17. Holtzer, J. A., Karliner, J. S., O'Rourke, R. A. andPeterson, K. L. (1973) Quantitative angiographic analysis of the left ventricle in patients with isolated rheumatic mitral stenosis.Br. Heart J.,35, 497–502.Google Scholar
  18. Ingels, N. G., Daughters, G. T., Stinson, E. D. andAlderman, E. C. (1975) Measurements of midwall myocardial dynamics in intact man by radiography surgically implanted markers.Circ.,52, 859–867.Google Scholar
  19. Kligfield, P., Okin, P., Richard, B., Devereux, B., Goldberg, H. andBorer, J. S. (1984) Duration of ejection in aortic stenosis: effect of stroke volume and pressure gradient.J. Am. Coll. Cardiol.,3, 157–161.CrossRefGoogle Scholar
  20. Krueger, W. andPollack, G. H. (1975) Myocardial sarcomere dynamics during isometric contraction.J. Physiol. (Lond.),251, 627–638.Google Scholar
  21. Lima, O. C., Sahn, D. J., Valdes Cruz, I. M., Goldberg, S. L., Barron, J. V., Allen, H. D. andGrenadier, E. (1983) Noninvasive prediction of transvalvular pressure gradient in patients with pulmonary stenosis by quantitative two dimensional echocardiographic Doppler studies.Circ.,67, 866–871.Google Scholar
  22. Marcus, M. I., Mueller, T. M., Gascho, J. A. andKerber, R. E. (1979) Effects of cardiac hypertrophy secondary to hypertension on the coronary circulation.Am. J. Cardiol.,44, 1023–1028.CrossRefGoogle Scholar
  23. Mirsky, I., Malkenson, L. andVatner, S. F. (1983) Left ventricular function in pressure overload hypertrophy at rest and in response to catecholamine stress.Circ.,68, Suppl. III, 303.Google Scholar
  24. Mirsky, I., Pfeffer, J. M., Pfeffer, M. A. andBraunwald, E. (1984) The contractile state as the major determinant in the evolution of left ventricular dysfunction in the spontaneous hypertensive rat.Circ. Res.,53, 767–778.Google Scholar
  25. Nicholas, A., Sciacca, R. R., Weiss, M. B., Blood, D. K., Brennan, D. L. andCannon, P. J. (1980) Effect of left ventricular hypertrophy on myocardial blood flow and ventricular performance in systemic hypertension.Circ.,62, 329–340.Google Scholar
  26. O'Rourke, R. A. andCrawford, M. H. (1980) Timing of valve replacement in patients with chronic aortic regurgitation (Editorial). ——Ibid.,61, 493–495.Google Scholar
  27. Rahimtoola, S. H. (1977) Early valve replacement for preservation of ventricular function (Editorial).Am. J. Cardiol.,40, 471–475.CrossRefGoogle Scholar
  28. Rakusan, K. (1971) Quantitative morphology of capillaries of the heart: number of capillaries in animal and human hearts under normal and pathological conditions.Methods Archiev. Exp. Pathol.,5, 272–286.Google Scholar
  29. Schwartz, E., Mall, G., Zebe, H., Schmitzer, E., Manthey, J., Schuerlen, H. andKubler, W. (1984) Determinants of survival in patients with congestive cardiomyopathy: quantitative morphologic findings and LV hemodynamics.Circ.,70, 923–928.Google Scholar
  30. Sonnenblick, E. H., Ross, J., Covel, H. W., Spotnitz, N. M. andSpiro, D. (1967) The ultrastructure of the heart in systole and diastole.Circ. Res.,21, 423–431.Google Scholar
  31. Sonnenblick, E. H., Skelton, C. L., Spotnitz, W. D. andFellman, D. (1973) Redefinition of the ultrastructural basis of cardiac length-tension relations.Circ.,48, 65–72.Google Scholar
  32. Sonnenblick, E. H. (1980) The structural basis and importance of restoring forces and elastic record of the filling of the heart.Europ. Heart J.,1, (Suppl. A), 107–110.Google Scholar
  33. Straurer, B. E. (1979) Myocardial oxygen consumption in chronic heart disease, role of wall stress hypertrophy and coronary reserve.Am. J. Cardiol.,44, 730–740.CrossRefGoogle Scholar
  34. Streeter, D. P., Spontiz, H. M., Patel, D. J., Ross, J. andSonnenblick, E. H. (1969) Fiber orientation in the canine left ventricle during diastole and systole.Circ. Res.,24, 339–347.Google Scholar
  35. Sutton, M. G. St. J., Plappent, T. A., Hirshfeld, J. W., andReichek, N. (1984) Assessment of left ventricular mechanics in patients with asymptomatic aortic regurgitation: a two-dimensional echochardiographic study.Circ.,69, 259–268.Google Scholar
  36. Taylor, R. R. andHopkins, B. E. (1972) Left ventricular response to experimentally induced chronic regurgitation.Cardiovasc. Res.,6, 404–414.CrossRefGoogle Scholar
  37. Weiss, M. B., Ellis, K., Sciacca, R. R., Johnson, L. L., Schmit, D. M. andCannon, P. J. (1976) Myocardial blood flow in congestive and hypertrophic cardiomyopathy relation to peak wall stress and mean velocity of circumferential fiber shortening.Circ.,54, 484–494.Google Scholar
  38. Weiss, H. R., Neubauer, J. A., Lipp, J. A. andSinha, A. K. (1978) Quantitative determination of regional oxygen consumption in the dog heart.Circ. Res.,43, 394–401.Google Scholar
  39. Wynne, J. andBraunwald, E. (1984) The cardiomyopathies and myocardities. InPrinciples of internal medicine.Harrison, T. R. (Ed.), McGraw-Hill, 1449.Google Scholar

Copyright information

© IFMBE 1990

Authors and Affiliations

  • R. Beyar
    • 1
  • S. Sideman
    • 1
  1. 1.Department of Chemical & Biomedical Engineering, Julius Silver Institute of Biomedical EngineeringTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations