Advertisement

Medical and Biological Engineering and Computing

, Volume 28, Issue 6, pp 544–549 | Cite as

Noise reduction in biological step signals: application to saccadic EOG

  • I. N. Bankman
  • N. V. Thakor
Physiological Measurement

Abstract

A weighted filter for noise reduction in nonrecurrent step signals where adaptive filtering cannot be applied is described. An optimal correction of a conventional finite impulse response (FIR) filter is achieved by using a priori knowledge of noise variance and a continuous estimation of the error signal's power. The weighted filter provides an optimal compromise between noise filtering and distortionless tracking. The prior knowledge required is that of the noise power and the lowest frequency in the noise spectrum. Application of the weighted filter to the saccadic electro-oculogram (EOG) results in better estimations of saccade duration and velocity.

Keywords

EOG Filtering Noise reduction Saccade 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, A. L., Troost, B. T. andDell'Osso, L. F. (1983) The effects of age on normal saccadic characteristics and their variability.Vis. Res.,23, 33–37.CrossRefGoogle Scholar
  2. Arakawa, K., Fender, D. H., Harashima, H., Miyakawa, H. andSaitoh, A. (1986) Separation of a nonstationarity component from EEG by a nonlinear digital filter.IEEE Trans.,BME-33, 724–726.Google Scholar
  3. Bahill, A. T., Brockenbrough, A. andTroost, B. T. (1981) Variability and development of a normative data base for saccadic eye movements.Invest. Ophthalmol. Vis. Sci.,21, 116–125.Google Scholar
  4. Bahill, A. T. andMcDonald, J. D. (1983) Frequency limitations and optimal step size for the two-point central difference derivative algorithm with applications to human eye movement data.IEEE Trans.,BME-30, 191–194.Google Scholar
  5. Baloh, R. W., Sills, A. W., Kumley, W. E. andHonrubia, V. (1975) Quantitative measurement of saccade amplitude, duration and velocity.Neurology,25, 1065–1070.Google Scholar
  6. Baloh, R. W., Langhofer, L., Honrubia, V. andYee, R. D. (1980) On-line analysis of eye movements using a digital computer.Aviat. Space Environ. Med.,51, 563–567.Google Scholar
  7. Bianchi, M., Inchingolo, P. andSpanio, M. (1982) Characteristics of saccadic eye movements in healthy man.Neurosci. Lett., Suppl.10, S77.Google Scholar
  8. Deubel, H., Wolf, W. andHauske, G. (1982) Corrective saccades: Effect of shifting the saccade goal.Vis. Res.,22, 353–364.CrossRefGoogle Scholar
  9. Ferrara, E. R. andWidrow, B. (1982) Fetal electrocardiogram enhancement by time-sequenced adaptive filtering.IEEE Trans.,BME-29, 458–459.Google Scholar
  10. Hallett, P. E. andAdams, B. D. (1980) The predictability of saccadic latency in a novel voluntary oculomotor task.Vis. Res.,20, 329–333.CrossRefGoogle Scholar
  11. Inchingolo, P. andSpanio, M. (1985) On the identification and analysis of saccadic eye movements—a quantitative study of the processing procedures.IEEE Trans.,BME-32, 683–695.Google Scholar
  12. McClellan, J. H., Parks, T. W. andRabiner, L. R. (1973) A computer program for designing optimum FIR linear phase digital filters.,AU-21, 506–526.Google Scholar
  13. Thakor, N. V. (1987) Adaptive filtering of evoked potentials.,BME-34, 6–12.Google Scholar
  14. Yelderman, M., Widrow, B., Cioffi, J. M., Hesler, E. andLeddy, J. A. (1983) ECG enhancement by adaptive cancellation of electrosurgical interference.,BME-30, 392–398.Google Scholar

Copyright information

© IFMBE 1990

Authors and Affiliations

  • I. N. Bankman
    • 1
  • N. V. Thakor
    • 1
  1. 1.Department of Biomedical EngineeringJohns Hopkins School of MedicineBaltimoreUSA

Personalised recommendations