Skip to main content
Log in

Use of a model for simulating individual aortic dynamics in man

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A simulation model is suggested for the analysis of aortic dynamics in man. The aortic model consists of six segments and is part of a larger model of the closed-loop human circulation. The model is simulated on a special-purpose analogue computer. Three parameters are employed to characterise the arterial system; peripheral resistance, aortic compliance and peripheral damping. Using a method for adapting the model to the individual patient, measurements of aortic pressure, cardiac output and pulse transmission time from 29 patients were used to test the validity of this approach. The model is able to simulate the pressure course along the aorta satisfactorily. The compliance calculated from the transmission properties of the aorta was compared with the complicance calculated from the stroke volume and pressure pulse. An adequate correlation (r=0.98) was found between these two independent methods. The mean compliance of the total aorta was 0.6 ml/mm Hg at a mean pressure of 104 mm Hg. The compliance showed large individual variations and decreasing values with increasing age of the patient. It is concluded that the model enables simulation of the individual aorta.

Sommaire

Un modèle de simulation est proposé pour l'analyse de la dynamique aortique chez l'homme. Le modèle aortique comprend six segments et fait partie d'un plus grand modèle de la circulation humaine à anse fermée. Le modèle est simulé sur un ordinateur analogue, à des fins spéciales Trois paramètres sont utilisés pour caractériser le système artériel: résistance périphérique, conformité aortique et amortissement aortique. Avec une mèthode d'adaptation du modèle au patient individuel, des mesures de pression aortique, sortie cardiaque et durée de transmission du pouls furent pratiquées sur 29 patients, afin de contrôler la validité de cette approche. Le modèle est capable de simuler, de façon satisfaisante, la marche de pression le long de l'aorte. La conformité calculée à partir des propriétés ce transmission de l'aorte fut comparée à celle calculée à partir du volume de battement et de la pression du pouls. Une relation adéquate (r=0.98) fut découverte entre ces deux méthodes indépendantes. La conformité moyenne de l'aorte totale était de 0.6 ml/mm Hg, à une pression moyenne de 104 mm Hg. La conformité montra de grandes variations individueles et des valeurs décroissantes, en proportion de l'âge avancé du patient. On en conclut que le modèle permet la simulation de l'aorte individuelle.

Zusammenfassung

Es wird ein Simulationsmodell zur Analyse der aortabezüglichen Dynamik im Menschen vorgeschlagen. Das aortabezügliche Modell besteht aus sechs Segmenten und ist Teil eines großeren Modells des geschlossenen menschlichen Kreislaufs. Das Modell ist nach einem Spezial-Analogrechner simuliert. Es werden drei Parameter zur Darstellung des arteriellen Systems verwendet; Umfangswiderstand, aortabezügliche Compliance und Umfangsdämpfung. Unter Verwendung einer Methode zur Adaption des Modells an den individuellen Patienten, wurden Messungen der Übertragungszeit des Aortadrucks, Herztons und Puls von 29 Patienten verwendet, um die Gültigkeit dieses Versuchs zu testen. Das Modell ist fähig, den Druckverlauf entlang der Aorta zufriedenstellend zu simulieren. Die aus den Übertragungsfaktoren der Aorta kalkulierte Compliance wurde mit der Compliance des Schlagvolumens und des Druckimpluses verglichen. Es wurde eine ädequate Korrelation compliance der gesamten Aorta betrug 0.6 ml/mm Hg bei einem Durchschnittsdruck von 104 mm Hg. Die Compliance zeigte große, individuelle Variationen und abnehmende Werte mit zunehmendem Alter des Patienten. Zusammenfassend wird gesagt, daß das Modell die Simulation der individuellen Aorta ermöglicht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaslid, R. (1974) Simulation of the individual cardiovascular system—A pilot study. Report no. 74-51-W., Division of Engineering Cybernetics, University of Trondheim.

  • Aaslid, R. andBrubakk, A. O. (1971) A measuring and recording system for cardiovascular data. Proceedings Second Nordic meeting on Medical and Biological Engineering, 145–147.

  • Beneken, J. E. W. (1965) A mathematical approach to cardiovascular function. Ph.D. disertation, Report no. 2-4-5/6/, Institute of Medical Physics, Organisation for Health Research, Utrecht.

    Google Scholar 

  • Bramwell, J. C. andHill, A. V. (1922) Velocity of transmission of the pulse-wave and elasticity of arteries.Lancet 891–892.

  • Branthwaite, M. A. andBradley, R. D. (1968) Measurement of cardiac output by thermal dilution in man.J. Appl. Phys.,3, 434–438.

    Google Scholar 

  • Broemser, Ph. andRanke, D. F. (1933) Die physikalische Bestimmung des Schlagvolumens des Herzens.Z. Kreislauf forsch.,25, 11–21.

    Google Scholar 

  • Chang, P. P. (1973) Model-based parameter estimation of canine systemic circulatory system. Ph.D., Thesis. University of Wisconsin.

  • Frank, O. (1899) Die Grundformen des arteriellen Pulses.Z. Biologie 37, 483–526.

    Google Scholar 

  • Fry, D. L. (1967) Measurement of pulsatile blood flow by the computed pressure-gradient technique.IEEE Trans.,BME-14, 171–177.

    Google Scholar 

  • Greenfield, J. C. andPatel, D. J. (1962) Relation between pressure and diameter in the ascending aorta of man.Circulation Res.,10, 778–781.

    Google Scholar 

  • Guyton, A. C., Jones, C. E. andColeman, T. G. (1973) Circulation physiology:Cardiac output and its regulation. W. B. Saunders, Philadelphia.

    Google Scholar 

  • Hallock, P. andBenson, I. C. (1937) Studies on the elastic properties of human isolated aorta.J. Clin. Invest.,16, 595–602.

    Article  Google Scholar 

  • Hyndman, B. W. (1973) An example of digital computer simulation: Investigation of the human cardiovascular system. InComputer technique in biomedicine and medicine, (Ed. Haga, E.) Auerbach Publication, Philadelphia.

    Google Scholar 

  • Hyner, C. F. (1962) An improved method of computing diluation curves. Report no. CP 62-390, Department of Electronical Engineering and Medicine, Northwestern University, Evanston, Illinois, USA.

    Google Scholar 

  • Jager, G. N. (1965) Electrical model of the human systemic arterial tree. Ph.D. thesis, University of Utrecht.

  • Lansing, A. I. (1959) Elastic tissue. InThe arterial wall, (Ed. Lansing, A. I.), Williamson & Wilkins, Baltimore.

    Google Scholar 

  • Noordergraaf, E. (1963) Development of an analog computer for the human systemic arterial system. InCirculatory analog computers (Eds. Noordergraaf, A., Jager, G. and Westerhof, N.) North Holland.

  • Noordergraaf, A., Boom, H. B. K. andVerdouw, P. D. (1960) A human systemic circulatory analog computer. Proceedings 1st Congress Society of Ballistocardiographic Research, Zeist.

  • O'Rourke, M. F. andTaylor, M. G. (1967) Input impedance of the systemic circulation.Circulation Res.,20, 365–380.

    Google Scholar 

  • DePater, L. (1966) An electrical analogue of the human circulatory system. Ph.D. thesis, University of Groningen.

  • Rideout, V. C. andDick, D. E. (1967) Difference-differential equations for fluid flow in distensible tubes.IEEE Trans.,BME-14, 171–177.

    Google Scholar 

  • Rideout, V. C. andSims, J. B. (1969) Computer study of the effects of small nonlinearities in the arterial system.Math. Biosci.,4, 411–426.

    Article  Google Scholar 

  • Rokseth, R., Helie, I., Marstrander, F. andStorstein, O. (1960) Reference level in pressure recordings during right heart catheterization.Scand. J. Clin. & lab. Invest.,12, 116–120.

    Google Scholar 

  • Rothe, C. H. andNash, F. D. (1968) Renal arterial compliance and conductance measurement using online self-adaptive analog computation of model parameters.Med. & Biol. Eng. 6, 53–69.

    Google Scholar 

  • Simon E. andMeyer W. W. (1958) Das Volumen, die Volumendehnbarkeit und die Druck-Längen-Beziehungen des gesamten aortalen Windkessels in abhängigkeit von Alter, Hochdruck und arteriosklerose.Klin. Wochenschrift 36, 424–432.

    Article  Google Scholar 

  • Sims, J. B. (1970) A hybrid-computeraided study of parameter estimation in the systemic circulation. Ph.D. thesis University of Wisconsin.

  • Snyder M. F., Rideout, V. C. andHillestad, R. J. (1968) Computer modelling of the human systemic arterial tree.J. Biomech. I 341–353.

    Article  Google Scholar 

  • Spencer, M. R., Okino, H., Denison, A. B. andBerry, R. L. (1961) Electronic and mathematical models of the circulatory system. Digest of the 4th International Conference on Medical Electronics p. 144, New York.

  • Taylor, M. G. (1964) Wave travel in arteries and the design of the cardiovascular system.In Attinger, E. O. (Ed.).Pulsatile blood flow, McGraw Hill, New York.

    Google Scholar 

  • Wagner, R. andKapal, E. (1952) Über Eigenschaften des aortenwindkessels. 2. Mitteilung. Undersuchungen an meinschlichen Aorten verschiedenen Alters.Z. Biologie 105, 263–292.

    Google Scholar 

  • Wesseling, K. H., DeWit, B. andBeneken, J. E. W. (1973) Arm arterial parameters derived from noninvasively recorded pulse waves, using parameters estimation.Med. & Biol. Eng. 11, 728–731.

    Google Scholar 

  • Westerhof, N., Elzinga, G., Sipkema, P. andvan den Bos, G. C. Quantitative analysis of the arterial system and heart by means of pressure-flow relations.In Hwang, N. H. C. andNorman, N. A. Cardiovascular flow dynamics and measurements, University Park Press, Baltimore, London, Tokyo.

  • Wetterer, E. andKenner, Th. (1968)Grundlagen der Dynamik des Arterienpulses, Springer-Verlag.

  • Yaginuma, T., Wakabayshi, A., Shimono, Y., Watanabe, M., Murai, K. andSakai, A. (1972) Effects of Aortic Distensibility on the cardiac force in man.Japan Circul. J. 36, 1187–1203.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brubakk, A.O., Aaslid, R. Use of a model for simulating individual aortic dynamics in man. Med. Biol. Eng. Comput. 16, 231–242 (1978). https://doi.org/10.1007/BF02442421

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02442421

Keywords

Navigation