The use of the singular value decomposition in electrocardiography

  • A. A. Damen
  • J. van der Kam


In the paper it is shown that singular value decomposition (s.v.d.) is an excellent tool for studying the limit properties of a feasible solution for the inverse problem in electrocardiography. When s.v.d. is applied to the transfer matrix, relating equivalent heart sources to the skin potentials, it provides a measure of the observability. In an example presented, a series of orthonormal potential patterns on a pericardial surface are found in an order of decreasing observability. When s.v.d. is applied to a data matrix, consisting of skin potentials as a function of time and position, one finds the normalised principal components both in time and space. An appropriate use of the singular values leads to a noise filtering algorithm, which at the same time results in useful data reduction. Comparison of spatial potential patterns derived from both the transfer matrix and the data matrix may, finally, be used to evaluate the assumptions on the transfer.


Electrocardiography Information limits Inverse problem Pericardial potentials Singular value decomposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed, N., Milne, P. J. andHarris, S. G. (1975) Electrocardiographic data compression via orthogonal compression.IEEE Trans.,BME-22, 484–492.Google Scholar
  2. Barr, R. C., Pilkington, T. C., Boineau, J. P. andRogers, C. L. (1970) An inverse electrocardiographic solution with an on-off model.,BME-17, 49–57.Google Scholar
  3. Barr, R. C., Ramsey, M. andSpach, M. S. (1977) Relating epicardial to body surface potential distributions by means of transfer coefficients based on geometry measurements.,BME-24, 1–11.Google Scholar
  4. Damen, A. A. H. (1980) On the observability of electrical cardiac sources. Ph.D. dissertation, Eindhoven University of Technology, The Netherlands.Google Scholar
  5. Golub, G. H. andReinsch, C. (1970) Singular value decompositions and least squares solutions.Numer. Math.,14, 403–420.MATHCrossRefGoogle Scholar
  6. Hambley, A. R., Moruzzi, R. L. andFeldman, C. L. (1974) The use of intrinsic components in an ECG-filter.IEEE Trans. BME-21, 469–504.Google Scholar
  7. Horan, L. G., Flowers, N. C. andBrody, D. A. (1964) Principal factor waveforms of the thoracic QRS-complex.Circulation Res.,15, 131–145.Google Scholar
  8. van der Kam, J. J. andDamen, A. A. (1978) Observability of electrical heart activity studied with the singular value decomposition. Department of Electrical Engineering, Eindhoven University of Technology, TH-Report 78-E-81.Google Scholar
  9. Martin, R. andPilkington, T. (1972) Unconstrained inverse electrocardiography: epicardial potentials.IEEE Trans.,BME-19, 276–285.Google Scholar
  10. van Schaik, J. W. M. (1976) The reproducibility of the electrocardiogram. M.Sc. Thesis, Group Measurement and Control, Department of Electrical Engineering, Eindhoven University of Technology, (in Dutch).Google Scholar
  11. Scher, A. M., Young, A. C. andMeredith, W. M. (1960) Factor analysis of the electrocardiogram.Circulation Res.,8, 519–526.Google Scholar
  12. Young, T. Y., andHuggins, W. H. (1962) The intrinsic component theory of electrocardiography.IRE Trans.,BME-9, 214–221.Google Scholar

Copyright information

© IFMBE 1982

Authors and Affiliations

  • A. A. Damen
    • 1
  • J. van der Kam
    • 1
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations